mirror of
https://github.com/open-webui/open-webui
synced 2025-06-09 16:07:54 +00:00
Merge pull request #14370 from daw/feat/add-azure-openai-embeddings-option
feat:Add Azure OpenAI embedding support
This commit is contained in:
commit
ff353578db
@ -2184,6 +2184,27 @@ RAG_OPENAI_API_KEY = PersistentConfig(
|
||||
os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY),
|
||||
)
|
||||
|
||||
RAG_AZURE_OPENAI_BASE_URL = PersistentConfig(
|
||||
"RAG_AZURE_OPENAI_BASE_URL",
|
||||
"rag.azure_openai.base_url",
|
||||
os.getenv("RAG_AZURE_OPENAI_BASE_URL", ""),
|
||||
)
|
||||
RAG_AZURE_OPENAI_API_KEY = PersistentConfig(
|
||||
"RAG_AZURE_OPENAI_API_KEY",
|
||||
"rag.azure_openai.api_key",
|
||||
os.getenv("RAG_AZURE_OPENAI_API_KEY", ""),
|
||||
)
|
||||
RAG_AZURE_OPENAI_DEPLOYMENT = PersistentConfig(
|
||||
"RAG_AZURE_OPENAI_DEPLOYMENT",
|
||||
"rag.azure_openai.deployment",
|
||||
os.getenv("RAG_AZURE_OPENAI_DEPLOYMENT", ""),
|
||||
)
|
||||
RAG_AZURE_OPENAI_VERSION = PersistentConfig(
|
||||
"RAG_AZURE_OPENAI_VERSION",
|
||||
"rag.azure_openai.version",
|
||||
os.getenv("RAG_AZURE_OPENAI_VERSION", ""),
|
||||
)
|
||||
|
||||
RAG_OLLAMA_BASE_URL = PersistentConfig(
|
||||
"RAG_OLLAMA_BASE_URL",
|
||||
"rag.ollama.url",
|
||||
|
@ -207,6 +207,10 @@ from open_webui.config import (
|
||||
RAG_FILE_MAX_SIZE,
|
||||
RAG_OPENAI_API_BASE_URL,
|
||||
RAG_OPENAI_API_KEY,
|
||||
RAG_AZURE_OPENAI_BASE_URL,
|
||||
RAG_AZURE_OPENAI_API_KEY,
|
||||
RAG_AZURE_OPENAI_DEPLOYMENT,
|
||||
RAG_AZURE_OPENAI_VERSION,
|
||||
RAG_OLLAMA_BASE_URL,
|
||||
RAG_OLLAMA_API_KEY,
|
||||
CHUNK_OVERLAP,
|
||||
@ -717,6 +721,11 @@ app.state.config.RAG_TEMPLATE = RAG_TEMPLATE
|
||||
app.state.config.RAG_OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL
|
||||
app.state.config.RAG_OPENAI_API_KEY = RAG_OPENAI_API_KEY
|
||||
|
||||
app.state.config.RAG_AZURE_OPENAI_BASE_URL = RAG_AZURE_OPENAI_BASE_URL
|
||||
app.state.config.RAG_AZURE_OPENAI_API_KEY = RAG_AZURE_OPENAI_API_KEY
|
||||
app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT = RAG_AZURE_OPENAI_DEPLOYMENT
|
||||
app.state.config.RAG_AZURE_OPENAI_VERSION = RAG_AZURE_OPENAI_VERSION
|
||||
|
||||
app.state.config.RAG_OLLAMA_BASE_URL = RAG_OLLAMA_BASE_URL
|
||||
app.state.config.RAG_OLLAMA_API_KEY = RAG_OLLAMA_API_KEY
|
||||
|
||||
@ -811,14 +820,32 @@ app.state.EMBEDDING_FUNCTION = get_embedding_function(
|
||||
(
|
||||
app.state.config.RAG_OPENAI_API_BASE_URL
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else app.state.config.RAG_OLLAMA_BASE_URL
|
||||
else (
|
||||
app.state.config.RAG_OLLAMA_BASE_URL
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else app.state.config.RAG_AZURE_OPENAI_BASE_URL
|
||||
)
|
||||
),
|
||||
(
|
||||
app.state.config.RAG_OPENAI_API_KEY
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else app.state.config.RAG_OLLAMA_API_KEY
|
||||
else (
|
||||
app.state.config.RAG_OLLAMA_API_KEY
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else app.state.config.RAG_AZURE_OPENAI_API_KEY
|
||||
)
|
||||
),
|
||||
app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
||||
(
|
||||
app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
(
|
||||
app.state.config.RAG_AZURE_OPENAI_VERSION
|
||||
if app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
########################################
|
||||
|
@ -5,6 +5,7 @@ from typing import Optional, Union
|
||||
import requests
|
||||
import hashlib
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import time
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
|
||||
@ -400,12 +401,14 @@ def get_embedding_function(
|
||||
url,
|
||||
key,
|
||||
embedding_batch_size,
|
||||
deployment=None,
|
||||
version=None,
|
||||
):
|
||||
if embedding_engine == "":
|
||||
return lambda query, prefix=None, user=None: embedding_function.encode(
|
||||
query, **({"prompt": prefix} if prefix else {})
|
||||
).tolist()
|
||||
elif embedding_engine in ["ollama", "openai"]:
|
||||
elif embedding_engine in ["ollama", "openai", "azure_openai"]:
|
||||
func = lambda query, prefix=None, user=None: generate_embeddings(
|
||||
engine=embedding_engine,
|
||||
model=embedding_model,
|
||||
@ -414,6 +417,8 @@ def get_embedding_function(
|
||||
url=url,
|
||||
key=key,
|
||||
user=user,
|
||||
deployment=deployment,
|
||||
version=version,
|
||||
)
|
||||
|
||||
def generate_multiple(query, prefix, user, func):
|
||||
@ -697,6 +702,61 @@ def generate_openai_batch_embeddings(
|
||||
return None
|
||||
|
||||
|
||||
def generate_azure_openai_batch_embeddings(
|
||||
deployment: str,
|
||||
texts: list[str],
|
||||
url: str,
|
||||
key: str = "",
|
||||
model: str = "",
|
||||
version: str = "",
|
||||
prefix: str = None,
|
||||
user: UserModel = None,
|
||||
) -> Optional[list[list[float]]]:
|
||||
try:
|
||||
log.debug(
|
||||
f"generate_azure_openai_batch_embeddings:deployment {deployment} batch size: {len(texts)}"
|
||||
)
|
||||
json_data = {"input": texts, "model": model}
|
||||
if isinstance(RAG_EMBEDDING_PREFIX_FIELD_NAME, str) and isinstance(prefix, str):
|
||||
json_data[RAG_EMBEDDING_PREFIX_FIELD_NAME] = prefix
|
||||
|
||||
url = f"{url}/openai/deployments/{deployment}/embeddings?api-version={version}"
|
||||
|
||||
for _ in range(5):
|
||||
r = requests.post(
|
||||
url,
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
"api-key": key,
|
||||
**(
|
||||
{
|
||||
"X-OpenWebUI-User-Name": user.name,
|
||||
"X-OpenWebUI-User-Id": user.id,
|
||||
"X-OpenWebUI-User-Email": user.email,
|
||||
"X-OpenWebUI-User-Role": user.role,
|
||||
}
|
||||
if ENABLE_FORWARD_USER_INFO_HEADERS and user
|
||||
else {}
|
||||
),
|
||||
},
|
||||
json=json_data,
|
||||
)
|
||||
if r.status_code == 429:
|
||||
retry = float(r.headers.get("Retry-After", "1"))
|
||||
time.sleep(retry)
|
||||
continue
|
||||
r.raise_for_status()
|
||||
data = r.json()
|
||||
if "data" in data:
|
||||
return [elem["embedding"] for elem in data["data"]]
|
||||
else:
|
||||
raise Exception("Something went wrong :/")
|
||||
return None
|
||||
except Exception as e:
|
||||
log.exception(f"Error generating azure openai batch embeddings: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def generate_ollama_batch_embeddings(
|
||||
model: str,
|
||||
texts: list[str],
|
||||
@ -794,6 +854,32 @@ def generate_embeddings(
|
||||
model, [text], url, key, prefix, user
|
||||
)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
elif engine == "azure_openai":
|
||||
deployment = kwargs.get("deployment", "")
|
||||
version = kwargs.get("version", "")
|
||||
if isinstance(text, list):
|
||||
embeddings = generate_azure_openai_batch_embeddings(
|
||||
deployment,
|
||||
text,
|
||||
url,
|
||||
key,
|
||||
model,
|
||||
version,
|
||||
prefix,
|
||||
user,
|
||||
)
|
||||
else:
|
||||
embeddings = generate_azure_openai_batch_embeddings(
|
||||
deployment,
|
||||
[text],
|
||||
url,
|
||||
key,
|
||||
model,
|
||||
version,
|
||||
prefix,
|
||||
user,
|
||||
)
|
||||
return embeddings[0] if isinstance(text, str) else embeddings
|
||||
|
||||
|
||||
import operator
|
||||
|
@ -239,6 +239,12 @@ async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
|
||||
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
|
||||
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
|
||||
},
|
||||
"azure_openai_config": {
|
||||
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
|
||||
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
|
||||
"deployment": request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT,
|
||||
"version": request.app.state.config.RAG_AZURE_OPENAI_VERSION,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@ -252,9 +258,17 @@ class OllamaConfigForm(BaseModel):
|
||||
key: str
|
||||
|
||||
|
||||
class AzureOpenAIConfigForm(BaseModel):
|
||||
url: str
|
||||
key: str
|
||||
deployment: str
|
||||
version: str
|
||||
|
||||
|
||||
class EmbeddingModelUpdateForm(BaseModel):
|
||||
openai_config: Optional[OpenAIConfigForm] = None
|
||||
ollama_config: Optional[OllamaConfigForm] = None
|
||||
azure_openai_config: Optional[AzureOpenAIConfigForm] = None
|
||||
embedding_engine: str
|
||||
embedding_model: str
|
||||
embedding_batch_size: Optional[int] = 1
|
||||
@ -271,7 +285,7 @@ async def update_embedding_config(
|
||||
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
|
||||
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
|
||||
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]:
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai", "azure_openai"]:
|
||||
if form_data.openai_config is not None:
|
||||
request.app.state.config.RAG_OPENAI_API_BASE_URL = (
|
||||
form_data.openai_config.url
|
||||
@ -288,6 +302,20 @@ async def update_embedding_config(
|
||||
form_data.ollama_config.key
|
||||
)
|
||||
|
||||
if form_data.azure_openai_config is not None:
|
||||
request.app.state.config.RAG_AZURE_OPENAI_BASE_URL = (
|
||||
form_data.azure_openai_config.url
|
||||
)
|
||||
request.app.state.config.RAG_AZURE_OPENAI_API_KEY = (
|
||||
form_data.azure_openai_config.key
|
||||
)
|
||||
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT = (
|
||||
form_data.azure_openai_config.deployment
|
||||
)
|
||||
request.app.state.config.RAG_AZURE_OPENAI_VERSION = (
|
||||
form_data.azure_openai_config.version
|
||||
)
|
||||
|
||||
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
|
||||
form_data.embedding_batch_size
|
||||
)
|
||||
@ -304,14 +332,32 @@ async def update_embedding_config(
|
||||
(
|
||||
request.app.state.config.RAG_OPENAI_API_BASE_URL
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else request.app.state.config.RAG_OLLAMA_BASE_URL
|
||||
else (
|
||||
request.app.state.config.RAG_OLLAMA_BASE_URL
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
|
||||
)
|
||||
),
|
||||
(
|
||||
request.app.state.config.RAG_OPENAI_API_KEY
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else request.app.state.config.RAG_OLLAMA_API_KEY
|
||||
else (
|
||||
request.app.state.config.RAG_OLLAMA_API_KEY
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
|
||||
)
|
||||
),
|
||||
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
||||
(
|
||||
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
(
|
||||
request.app.state.config.RAG_AZURE_OPENAI_VERSION
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
return {
|
||||
@ -327,6 +373,12 @@ async def update_embedding_config(
|
||||
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
|
||||
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
|
||||
},
|
||||
"azure_openai_config": {
|
||||
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
|
||||
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
|
||||
"deployment": request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT,
|
||||
"version": request.app.state.config.RAG_AZURE_OPENAI_VERSION,
|
||||
},
|
||||
}
|
||||
except Exception as e:
|
||||
log.exception(f"Problem updating embedding model: {e}")
|
||||
@ -1129,14 +1181,32 @@ def save_docs_to_vector_db(
|
||||
(
|
||||
request.app.state.config.RAG_OPENAI_API_BASE_URL
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else request.app.state.config.RAG_OLLAMA_BASE_URL
|
||||
else (
|
||||
request.app.state.config.RAG_OLLAMA_BASE_URL
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
|
||||
)
|
||||
),
|
||||
(
|
||||
request.app.state.config.RAG_OPENAI_API_KEY
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
|
||||
else request.app.state.config.RAG_OLLAMA_API_KEY
|
||||
else (
|
||||
request.app.state.config.RAG_OLLAMA_API_KEY
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
|
||||
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
|
||||
)
|
||||
),
|
||||
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
|
||||
(
|
||||
request.app.state.config.RAG_AZURE_OPENAI_DEPLOYMENT
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
(
|
||||
request.app.state.config.RAG_AZURE_OPENAI_VERSION
|
||||
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
embeddings = embedding_function(
|
||||
|
@ -180,15 +180,23 @@ export const getEmbeddingConfig = async (token: string) => {
|
||||
};
|
||||
|
||||
type OpenAIConfigForm = {
|
||||
key: string;
|
||||
url: string;
|
||||
key: string;
|
||||
url: string;
|
||||
};
|
||||
|
||||
type AzureOpenAIConfigForm = {
|
||||
key: string;
|
||||
url: string;
|
||||
deployment: string;
|
||||
version: string;
|
||||
};
|
||||
|
||||
type EmbeddingModelUpdateForm = {
|
||||
openai_config?: OpenAIConfigForm;
|
||||
embedding_engine: string;
|
||||
embedding_model: string;
|
||||
embedding_batch_size?: number;
|
||||
openai_config?: OpenAIConfigForm;
|
||||
azure_openai_config?: AzureOpenAIConfigForm;
|
||||
embedding_engine: string;
|
||||
embedding_model: string;
|
||||
embedding_batch_size?: number;
|
||||
};
|
||||
|
||||
export const updateEmbeddingConfig = async (token: string, payload: EmbeddingModelUpdateForm) => {
|
||||
|
@ -43,8 +43,13 @@
|
||||
let embeddingBatchSize = 1;
|
||||
let rerankingModel = '';
|
||||
|
||||
let OpenAIUrl = '';
|
||||
let OpenAIKey = '';
|
||||
let OpenAIUrl = '';
|
||||
let OpenAIKey = '';
|
||||
|
||||
let AzureOpenAIUrl = '';
|
||||
let AzureOpenAIKey = '';
|
||||
let AzureOpenAIDeployment = '';
|
||||
let AzureOpenAIVersion = '';
|
||||
|
||||
let OllamaUrl = '';
|
||||
let OllamaKey = '';
|
||||
@ -86,27 +91,40 @@
|
||||
return;
|
||||
}
|
||||
|
||||
if ((embeddingEngine === 'openai' && OpenAIKey === '') || OpenAIUrl === '') {
|
||||
toast.error($i18n.t('OpenAI URL/Key required.'));
|
||||
return;
|
||||
}
|
||||
if (embeddingEngine === 'openai' && (OpenAIKey === '' || OpenAIUrl === '')) {
|
||||
toast.error($i18n.t('OpenAI URL/Key required.'));
|
||||
return;
|
||||
}
|
||||
if (
|
||||
embeddingEngine === 'azure_openai' &&
|
||||
(AzureOpenAIKey === '' || AzureOpenAIUrl === '' || AzureOpenAIDeployment === '' || AzureOpenAIVersion === '')
|
||||
) {
|
||||
toast.error($i18n.t('OpenAI URL/Key required.'));
|
||||
return;
|
||||
}
|
||||
|
||||
console.debug('Update embedding model attempt:', embeddingModel);
|
||||
|
||||
updateEmbeddingModelLoading = true;
|
||||
const res = await updateEmbeddingConfig(localStorage.token, {
|
||||
embedding_engine: embeddingEngine,
|
||||
embedding_model: embeddingModel,
|
||||
embedding_batch_size: embeddingBatchSize,
|
||||
ollama_config: {
|
||||
key: OllamaKey,
|
||||
url: OllamaUrl
|
||||
},
|
||||
openai_config: {
|
||||
key: OpenAIKey,
|
||||
url: OpenAIUrl
|
||||
}
|
||||
}).catch(async (error) => {
|
||||
const res = await updateEmbeddingConfig(localStorage.token, {
|
||||
embedding_engine: embeddingEngine,
|
||||
embedding_model: embeddingModel,
|
||||
embedding_batch_size: embeddingBatchSize,
|
||||
ollama_config: {
|
||||
key: OllamaKey,
|
||||
url: OllamaUrl
|
||||
},
|
||||
openai_config: {
|
||||
key: OpenAIKey,
|
||||
url: OpenAIUrl
|
||||
},
|
||||
azure_openai_config: {
|
||||
key: AzureOpenAIKey,
|
||||
url: AzureOpenAIUrl,
|
||||
deployment: AzureOpenAIDeployment,
|
||||
version: AzureOpenAIVersion
|
||||
}
|
||||
}).catch(async (error) => {
|
||||
toast.error(`${error}`);
|
||||
await setEmbeddingConfig();
|
||||
return null;
|
||||
@ -200,13 +218,18 @@
|
||||
embeddingModel = embeddingConfig.embedding_model;
|
||||
embeddingBatchSize = embeddingConfig.embedding_batch_size ?? 1;
|
||||
|
||||
OpenAIKey = embeddingConfig.openai_config.key;
|
||||
OpenAIUrl = embeddingConfig.openai_config.url;
|
||||
OpenAIKey = embeddingConfig.openai_config.key;
|
||||
OpenAIUrl = embeddingConfig.openai_config.url;
|
||||
|
||||
OllamaKey = embeddingConfig.ollama_config.key;
|
||||
OllamaUrl = embeddingConfig.ollama_config.url;
|
||||
}
|
||||
};
|
||||
OllamaKey = embeddingConfig.ollama_config.key;
|
||||
OllamaUrl = embeddingConfig.ollama_config.url;
|
||||
|
||||
AzureOpenAIKey = embeddingConfig.azure_openai_config.key;
|
||||
AzureOpenAIUrl = embeddingConfig.azure_openai_config.url;
|
||||
AzureOpenAIDeployment = embeddingConfig.azure_openai_config.deployment;
|
||||
AzureOpenAIVersion = embeddingConfig.azure_openai_config.version;
|
||||
}
|
||||
};
|
||||
onMount(async () => {
|
||||
await setEmbeddingConfig();
|
||||
|
||||
@ -603,23 +626,26 @@
|
||||
bind:value={embeddingEngine}
|
||||
placeholder="Select an embedding model engine"
|
||||
on:change={(e) => {
|
||||
if (e.target.value === 'ollama') {
|
||||
embeddingModel = '';
|
||||
} else if (e.target.value === 'openai') {
|
||||
embeddingModel = 'text-embedding-3-small';
|
||||
} else if (e.target.value === '') {
|
||||
embeddingModel = 'sentence-transformers/all-MiniLM-L6-v2';
|
||||
}
|
||||
if (e.target.value === 'ollama') {
|
||||
embeddingModel = '';
|
||||
} else if (e.target.value === 'openai') {
|
||||
embeddingModel = 'text-embedding-3-small';
|
||||
} else if (e.target.value === 'azure_openai') {
|
||||
embeddingModel = 'text-embedding-3-small';
|
||||
} else if (e.target.value === '') {
|
||||
embeddingModel = 'sentence-transformers/all-MiniLM-L6-v2';
|
||||
}
|
||||
}}
|
||||
>
|
||||
<option value="">{$i18n.t('Default (SentenceTransformers)')}</option>
|
||||
<option value="ollama">{$i18n.t('Ollama')}</option>
|
||||
<option value="openai">{$i18n.t('OpenAI')}</option>
|
||||
<option value="openai">{$i18n.t('OpenAI')}</option>
|
||||
<option value="azure_openai">Azure OpenAI</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if embeddingEngine === 'openai'}
|
||||
{#if embeddingEngine === 'openai'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
@ -630,7 +656,7 @@
|
||||
|
||||
<SensitiveInput placeholder={$i18n.t('API Key')} bind:value={OpenAIKey} />
|
||||
</div>
|
||||
{:else if embeddingEngine === 'ollama'}
|
||||
{:else if embeddingEngine === 'ollama'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
@ -645,7 +671,33 @@
|
||||
required={false}
|
||||
/>
|
||||
</div>
|
||||
{/if}
|
||||
{:else if embeddingEngine === 'azure_openai'}
|
||||
<div class="my-0.5 flex flex-col gap-2 pr-2 w-full">
|
||||
<div class="flex gap-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('API Base URL')}
|
||||
bind:value={AzureOpenAIUrl}
|
||||
required
|
||||
/>
|
||||
<SensitiveInput placeholder={$i18n.t('API Key')} bind:value={AzureOpenAIKey} />
|
||||
</div>
|
||||
<div class="flex gap-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
placeholder="Deployment"
|
||||
bind:value={AzureOpenAIDeployment}
|
||||
required
|
||||
/>
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
placeholder="Version"
|
||||
bind:value={AzureOpenAIVersion}
|
||||
required
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
<div class=" mb-2.5 flex flex-col w-full">
|
||||
@ -741,7 +793,7 @@
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if embeddingEngine === 'ollama' || embeddingEngine === 'openai'}
|
||||
{#if embeddingEngine === 'ollama' || embeddingEngine === 'openai' || embeddingEngine === 'azure_openai'}
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Embedding Batch Size')}
|
||||
|
Loading…
Reference in New Issue
Block a user