mirror of
https://github.com/open-webui/open-webui
synced 2025-06-26 18:26:48 +00:00
Feat: Added settings to knowledge to handle individual rag config
This commit is contained in:
parent
5a1effb372
commit
fd3a4f2b28
871
src/lib/components/workspace/common/RagConfigModal.svelte
Normal file
871
src/lib/components/workspace/common/RagConfigModal.svelte
Normal file
@ -0,0 +1,871 @@
|
||||
<script>
|
||||
import Modal from '$lib/components/common/Modal.svelte';
|
||||
import { goto } from '$app/navigation';
|
||||
import { onMount, getContext, createEventDispatcher } from 'svelte';
|
||||
import { toast } from 'svelte-sonner';
|
||||
import SensitiveInput from '$lib/components/common/SensitiveInput.svelte';
|
||||
import Switch from '$lib/components/common/Switch.svelte';
|
||||
import Tooltip from '$lib/components/common/Tooltip.svelte';
|
||||
import Textarea from '$lib/components/common/Textarea.svelte';
|
||||
|
||||
import { createNewKnowledge, getKnowledgeBases } from '$lib/apis/knowledge';
|
||||
import { knowledge, user } from '$lib/stores';
|
||||
|
||||
import {
|
||||
getQuerySettings,
|
||||
updateQuerySettings,
|
||||
resetVectorDB,
|
||||
getEmbeddingConfig,
|
||||
updateEmbeddingConfig,
|
||||
getRerankingConfig,
|
||||
updateRerankingConfig,
|
||||
getRAGConfig,
|
||||
updateRAGConfig
|
||||
} from '$lib/apis/retrieval';
|
||||
|
||||
const i18n = getContext('i18n');
|
||||
export let show = false;
|
||||
export let RAGConfig = null;
|
||||
export let knowledgeId = null;
|
||||
|
||||
let localRAGConfig = {};
|
||||
|
||||
let loading = false;
|
||||
let name = '';
|
||||
let description = '';
|
||||
let accessControl = {};
|
||||
|
||||
let updateEmbeddingModelLoading = false;
|
||||
let updateRerankingModelLoading = false;
|
||||
|
||||
let embeddingEngine = RAGConfig.embedding_engine || "";
|
||||
let embeddingModel = RAGConfig.embedding_model || "";
|
||||
let embeddingBatchSize = RAGConfig.embedding_batch_size || "";
|
||||
|
||||
let OpenAIUrl = RAGConfig.openai_config?.url || "";
|
||||
let OpenAIKey = RAGConfig.openai_config?.key || "";
|
||||
|
||||
let OllamaUrl = RAGConfig.ollama_config?.url || "";
|
||||
let OllamaKey = RAGConfig.ollama_config?.key || "";
|
||||
|
||||
function resetLocalState() {
|
||||
if (!RAGConfig) return;
|
||||
|
||||
localRAGConfig = structuredClone(RAGConfig); // or deep clone method
|
||||
embeddingEngine = RAGConfig.embedding_engine || "";
|
||||
embeddingModel = RAGConfig.embedding_model || "";
|
||||
embeddingBatchSize = RAGConfig.embedding_batch_size || "";
|
||||
|
||||
OpenAIUrl = RAGConfig.openai_config?.url || "";
|
||||
OpenAIKey = RAGConfig.openai_config?.key || "";
|
||||
|
||||
OllamaUrl = RAGConfig.ollama_config?.url || "";
|
||||
OllamaKey = RAGConfig.ollama_config?.key || "";
|
||||
}
|
||||
|
||||
// Automatically reset on modal open
|
||||
$: if (show) {
|
||||
resetLocalState();
|
||||
}
|
||||
|
||||
const dispatch = createEventDispatcher();
|
||||
|
||||
const embeddingModelUpdateHandler = async () => {
|
||||
|
||||
if (embeddingEngine === '' && embeddingModel.split('/').length - 1 > 1) {
|
||||
toast.error(
|
||||
$i18n.t(
|
||||
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
||||
)
|
||||
);
|
||||
return;
|
||||
}
|
||||
if (embeddingEngine === 'ollama' && embeddingModel === '') {
|
||||
toast.error(
|
||||
$i18n.t(
|
||||
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
||||
)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
if (embeddingEngine === 'openai' && embeddingModel === '') {
|
||||
toast.error(
|
||||
$i18n.t(
|
||||
'Model filesystem path detected. Model shortname is required for update, cannot continue.'
|
||||
)
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
if ((embeddingEngine === 'openai' && OpenAIKey === '') || OpenAIUrl === '') {
|
||||
toast.error($i18n.t('OpenAI URL/Key required.'));
|
||||
return;
|
||||
}
|
||||
|
||||
console.log('Update embedding model attempt:', embeddingModel);
|
||||
|
||||
updateEmbeddingModelLoading = true;
|
||||
const res = await updateEmbeddingConfig(localStorage.token, {
|
||||
embedding_engine: embeddingEngine,
|
||||
embedding_model: embeddingModel,
|
||||
embedding_batch_size: embeddingBatchSize,
|
||||
ollama_config: {
|
||||
key: OllamaKey,
|
||||
url: OllamaUrl
|
||||
},
|
||||
openai_config: {
|
||||
key: OpenAIKey,
|
||||
url: OpenAIUrl
|
||||
},
|
||||
knowledge_id: knowledgeId,
|
||||
}).catch(async (error) => {
|
||||
toast.error(`${error}`);
|
||||
await setEmbeddingConfig();
|
||||
return null;
|
||||
});
|
||||
updateEmbeddingModelLoading = false;
|
||||
|
||||
if (res) {
|
||||
console.log('embeddingModelUpdateHandler:', res);
|
||||
if (res.status === true) {
|
||||
toast.success($i18n.t('Embedding model set to "{{embedding_model}}"', res), {
|
||||
duration: 1000 * 10
|
||||
});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const setEmbeddingConfig = async () => {
|
||||
|
||||
const embeddingConfig = await getEmbeddingConfig(localStorage.token, {knowledge_id: knowledgeId});
|
||||
|
||||
if (embeddingConfig) {
|
||||
embeddingEngine = embeddingConfig.embedding_engine;
|
||||
embeddingModel = embeddingConfig.embedding_model;
|
||||
embeddingBatchSize = embeddingConfig.embedding_batch_size ?? 1;
|
||||
|
||||
OpenAIKey = embeddingConfig.openai_config.key;
|
||||
OpenAIUrl = embeddingConfig.openai_config.url;
|
||||
|
||||
OllamaKey = embeddingConfig.ollama_config.key;
|
||||
OllamaUrl = embeddingConfig.ollama_config.url;
|
||||
}
|
||||
};
|
||||
|
||||
const submitHandler = async () => {
|
||||
loading = true;
|
||||
|
||||
if (
|
||||
localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'external' &&
|
||||
localRAGConfig.EXTERNAL_DOCUMENT_LOADER_URL === ''
|
||||
) {
|
||||
toast.error($i18n.t('External Document Loader URL required.'));
|
||||
return;
|
||||
}
|
||||
if (localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'tika' && localRAGConfig.TIKA_SERVER_URL === '') {
|
||||
toast.error($i18n.t('Tika Server URL required.'));
|
||||
return;
|
||||
}
|
||||
if (localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'docling' && localRAGConfig.DOCLING_SERVER_URL === '') {
|
||||
toast.error($i18n.t('Docling Server URL required.'));
|
||||
return;
|
||||
}
|
||||
if (
|
||||
localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'docling' &&
|
||||
((localRAGConfig.DOCLING_OCR_ENGINE === '' && localRAGConfig.DOCLING_OCR_LANG !== '') ||
|
||||
(localRAGConfig.DOCLING_OCR_ENGINE !== '' && localRAGConfig.DOCLING_OCR_LANG === ''))
|
||||
) {
|
||||
toast.error(
|
||||
$i18n.t('Both Docling OCR Engine and Language(s) must be provided or both left empty.')
|
||||
);
|
||||
return;
|
||||
}
|
||||
|
||||
if (
|
||||
localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'document_intelligence' &&
|
||||
(localRAGConfig.DOCUMENT_INTELLIGENCE_ENDPOINT === '' ||
|
||||
localRAGConfig.DOCUMENT_INTELLIGENCE_KEY === '')
|
||||
) {
|
||||
toast.error($i18n.t('Document Intelligence endpoint and key required.'));
|
||||
return;
|
||||
}
|
||||
if (
|
||||
localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'mistral_ocr' &&
|
||||
localRAGConfig.MISTRAL_OCR_API_KEY === ''
|
||||
) {
|
||||
toast.error($i18n.t('Mistral OCR API Key required.'));
|
||||
return;
|
||||
}
|
||||
|
||||
// Create a filtered version of localRAGConfig without embedding, OpenAI, Ollama, and reranking model properties
|
||||
const {
|
||||
embedding_engine,
|
||||
embedding_model,
|
||||
embedding_batch_size,
|
||||
openai_config,
|
||||
ollama_config,
|
||||
LOADED_EMBEDDING_MODELS,
|
||||
DOWNLOADED_EMBEDDING_MODELS,
|
||||
LOADED_RERANKING_MODELS,
|
||||
DOWNLOADED_RERANKING_MODELS,
|
||||
...filteredRAGConfig
|
||||
} = localRAGConfig;
|
||||
|
||||
// Create the filtered RAGConfig for backend updates
|
||||
const backendRAGConfig = { ...filteredRAGConfig, knowledge_id: knowledgeId };
|
||||
await updateRAGConfig(localStorage.token, backendRAGConfig)
|
||||
|
||||
if (!localRAGConfig.BYPASS_EMBEDDING_AND_RETRIEVAL) {
|
||||
await embeddingModelUpdateHandler();
|
||||
}
|
||||
|
||||
// Update embedding and reranking to show updates in UI
|
||||
localRAGConfig.embedding_engine = embeddingEngine
|
||||
localRAGConfig.embedding_model = embeddingModel
|
||||
localRAGConfig.embedding_batch_size = embeddingBatchSize
|
||||
localRAGConfig.openai_config = {"key": OpenAIKey, "url": OpenAIUrl}
|
||||
localRAGConfig.ollama_config = {"key": OllamaKey, "url": OllamaUrl}
|
||||
|
||||
dispatch('update', localRAGConfig)
|
||||
loading = false;
|
||||
};
|
||||
|
||||
</script>
|
||||
|
||||
<Modal size="sm" bind:show>
|
||||
<div class="w-full px-5 pb-4 dark:text-white">
|
||||
<div>
|
||||
<!-- Modal Header -->
|
||||
<div class="flex justify-between dark:text-gray-100 px-5 pt-3 pb-1">
|
||||
<div class="text-lg font-medium self-center font-primary">
|
||||
{$i18n.t('RAG Configuration')}
|
||||
</div>
|
||||
<button
|
||||
class="self-center"
|
||||
on:click={() => {
|
||||
show = false;
|
||||
resetLocalState();
|
||||
}}
|
||||
>
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
viewBox="0 0 20 20"
|
||||
fill="currentColor"
|
||||
class="w-5 h-5"
|
||||
>
|
||||
<path
|
||||
d="M6.28 5.22a.75.75 0 00-1.06 1.06L8.94 10l-3.72 3.72a.75.75 0 101.06 1.06L10 11.06l3.72 3.72a.75.75 0 101.06-1.06L11.06 10l3.72-3.72a.75.75 0 00-1.06-1.06L10 8.94 6.28 5.22z"
|
||||
/>
|
||||
</svg>
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<!-- Modal Body -->
|
||||
<div class="flex w-full justify-between">
|
||||
<div class="self-center text-xs font-medium">
|
||||
{$i18n.t('Content Extraction Engine')}
|
||||
</div>
|
||||
<div class="">
|
||||
<select
|
||||
class="dark:bg-gray-900 w-fit pr-8 rounded-sm px-2 text-xs bg-transparent outline-hidden text-right"
|
||||
bind:value={localRAGConfig.CONTENT_EXTRACTION_ENGINE}
|
||||
>
|
||||
<option value="">{$i18n.t('Default')}</option>
|
||||
<option value="external">{$i18n.t('External')}</option>
|
||||
<option value="tika">{$i18n.t('Tika')}</option>
|
||||
<option value="docling">{$i18n.t('Docling')}</option>
|
||||
<option value="document_intelligence">{$i18n.t('Document Intelligence')}</option>
|
||||
<option value="mistral_ocr">{$i18n.t('Mistral OCR')}</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
<div class="space-y-4 mt-4">
|
||||
{#if localRAGConfig.CONTENT_EXTRACTION_ENGINE === ''}
|
||||
<div class="flex w-full mt-1">
|
||||
<div class="flex-1 flex justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('PDF Extract Images (OCR)')}
|
||||
</div>
|
||||
<div class="flex items-center relative">
|
||||
<Switch bind:state={RAGConfig.PDF_EXTRACT_IMAGES} />
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{:else if RAGConfig.CONTENT_EXTRACTION_ENGINE === 'external'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Enter External Document Loader URL')}
|
||||
bind:value={localRAGConfig.EXTERNAL_DOCUMENT_LOADER_URL}
|
||||
/>
|
||||
<SensitiveInput
|
||||
placeholder={$i18n.t('Enter External Document Loader API Key')}
|
||||
required={false}
|
||||
bind:value={localRAGConfig.EXTERNAL_DOCUMENT_LOADER_API_KEY}
|
||||
/>
|
||||
</div>
|
||||
{:else if localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'tika'}
|
||||
<div class="flex w-full mt-1">
|
||||
<div class="flex-1 mr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Enter Tika Server URL')}
|
||||
bind:value={localRAGConfig.TIKA_SERVER_URL}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
{:else if localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'docling'}
|
||||
<div class="flex w-full mt-1">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Enter Docling Server URL')}
|
||||
bind:value={localRAGConfig.DOCLING_SERVER_URL}
|
||||
/>
|
||||
</div>
|
||||
{:else if localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'document_intelligence'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Enter Document Intelligence Endpoint')}
|
||||
bind:value={localRAGConfig.DOCUMENT_INTELLIGENCE_ENDPOINT}
|
||||
/>
|
||||
<SensitiveInput
|
||||
placeholder={$i18n.t('Enter Document Intelligence Key')}
|
||||
bind:value={localRAGConfig.DOCUMENT_INTELLIGENCE_KEY}
|
||||
/>
|
||||
</div>
|
||||
{:else if localRAGConfig.CONTENT_EXTRACTION_ENGINE === 'mistral_ocr'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<SensitiveInput
|
||||
placeholder={$i18n.t('Enter Mistral API Key')}
|
||||
bind:value={localRAGConfig.MISTRAL_OCR_API_KEY}
|
||||
/>
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
<Tooltip content={$i18n.t('Full Context Mode')} placement="top-start">
|
||||
{$i18n.t('Bypass Embedding and Retrieval')}
|
||||
</Tooltip>
|
||||
</div>
|
||||
<div class="flex items-center relative">
|
||||
<Tooltip
|
||||
content={localRAGConfig.BYPASS_EMBEDDING_AND_RETRIEVAL
|
||||
? $i18n.t(
|
||||
'Inject the entire content as context for comprehensive processing, this is recommended for complex queries.'
|
||||
)
|
||||
: $i18n.t(
|
||||
'Default to segmented retrieval for focused and relevant content extraction, this is recommended for most cases.'
|
||||
)}
|
||||
>
|
||||
<Switch bind:state={localRAGConfig.BYPASS_EMBEDDING_AND_RETRIEVAL} />
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if !localRAGConfig.BYPASS_EMBEDDING_AND_RETRIEVAL}
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">{$i18n.t('Text Splitter')}</div>
|
||||
<div class="flex items-center relative">
|
||||
<select
|
||||
class="dark:bg-gray-900 w-fit pr-8 rounded-sm px-2 text-xs bg-transparent outline-hidden text-right"
|
||||
bind:value={localRAGConfig.TEXT_SPLITTER}
|
||||
>
|
||||
<option value="">{$i18n.t('Default')} ({$i18n.t('Character')})</option>
|
||||
<option value="token">{$i18n.t('Token')} ({$i18n.t('Tiktoken')})</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" flex gap-1.5 w-full">
|
||||
<div class=" w-full justify-between">
|
||||
<div class="self-center text-xs font-medium min-w-fit mb-1">
|
||||
{$i18n.t('Chunk Size')}
|
||||
</div>
|
||||
<div class="self-center">
|
||||
<input
|
||||
class=" w-full rounded-lg py-1.5 px-4 text-sm bg-gray-50 dark:text-gray-300 dark:bg-gray-850 outline-hidden"
|
||||
type="number"
|
||||
placeholder={$i18n.t('Enter Chunk Size')}
|
||||
bind:value={localRAGConfig.CHUNK_SIZE}
|
||||
autocomplete="off"
|
||||
min="0"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="w-full">
|
||||
<div class=" self-center text-xs font-medium min-w-fit mb-1">
|
||||
{$i18n.t('Chunk Overlap')}
|
||||
</div>
|
||||
|
||||
<div class="self-center">
|
||||
<input
|
||||
class="w-full rounded-lg py-1.5 px-4 text-sm bg-gray-50 dark:text-gray-300 dark:bg-gray-850 outline-hidden"
|
||||
type="number"
|
||||
placeholder={$i18n.t('Enter Chunk Overlap')}
|
||||
bind:value={localRAGConfig.CHUNK_OVERLAP}
|
||||
autocomplete="off"
|
||||
min="0"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
|
||||
{#if !localRAGConfig.BYPASS_EMBEDDING_AND_RETRIEVAL}
|
||||
<div class="mb-3">
|
||||
<div class=" mb-2.5 text-base font-medium">{$i18n.t('Embedding')}</div>
|
||||
|
||||
<hr class=" border-gray-100 dark:border-gray-850 my-2" />
|
||||
|
||||
<div class=" mb-2.5 flex flex-col w-full justify-between">
|
||||
<div class="flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Embedding Model Engine')}
|
||||
</div>
|
||||
<div class="flex items-center relative">
|
||||
<select
|
||||
class="dark:bg-gray-900 w-fit pr-8 rounded-sm px-2 p-1 text-xs bg-transparent outline-hidden text-right"
|
||||
bind:value={embeddingEngine}
|
||||
placeholder="Select an embedding model engine"
|
||||
on:change={(e) => {
|
||||
if (e.target.value === 'ollama') {
|
||||
embeddingModel = '';
|
||||
} else if (e.target.value === 'openai') {
|
||||
embeddingModel = 'text-embedding-3-small';
|
||||
} else if (e.target.value === '') {
|
||||
embeddingModel = 'sentence-transformers/all-MiniLM-L6-v2';
|
||||
}
|
||||
}}
|
||||
>
|
||||
<option value="">{$i18n.t('Default (SentenceTransformers)')}</option>
|
||||
<option value="ollama">{$i18n.t('Ollama')}</option>
|
||||
<option value="openai">{$i18n.t('OpenAI')}</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if embeddingEngine === 'openai'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('API Base URL')}
|
||||
bind:value={OpenAIUrl}
|
||||
required
|
||||
/>
|
||||
|
||||
<SensitiveInput placeholder={$i18n.t('API Key')} bind:value={OpenAIKey} />
|
||||
</div>
|
||||
{:else if embeddingEngine === 'ollama'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('API Base URL')}
|
||||
bind:value={OllamaUrl}
|
||||
required
|
||||
/>
|
||||
|
||||
<SensitiveInput
|
||||
placeholder={$i18n.t('API Key')}
|
||||
bind:value={OllamaKey}
|
||||
required={false}
|
||||
/>
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
<div class=" mb-2.5 flex flex-col w-full">
|
||||
<div class=" mb-1 text-xs font-medium">{$i18n.t('Embedding Model')}</div>
|
||||
{#if $user?.role === 'admin'}
|
||||
<div class="">
|
||||
{#if embeddingEngine === 'ollama'}
|
||||
<div class="flex w-full">
|
||||
<div class="flex-1 mr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
bind:value={embeddingModel}
|
||||
placeholder={$i18n.t('Set embedding model')}
|
||||
required
|
||||
on:input={() => {
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
{:else}
|
||||
<div class="flex w-full">
|
||||
<div class="flex-1 mr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Set embedding model (e.g. {{model}})', {
|
||||
model: embeddingModel.slice(-40)
|
||||
})}
|
||||
bind:value={embeddingModel}
|
||||
on:input={() => {
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
|
||||
{#if embeddingEngine === ''}
|
||||
<button
|
||||
class="px-2.5 bg-transparent text-gray-800 dark:bg-transparent dark:text-gray-100 rounded-lg transition"
|
||||
on:click={() => {
|
||||
embeddingModelUpdateHandler();
|
||||
}}
|
||||
disabled={updateEmbeddingModelLoading}
|
||||
>
|
||||
{#if updateEmbeddingModelLoading}
|
||||
<div class="self-center">
|
||||
<svg
|
||||
class=" w-4 h-4"
|
||||
viewBox="0 0 24 24"
|
||||
fill="currentColor"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
>
|
||||
<style>
|
||||
.spinner_ajPY {
|
||||
transform-origin: center;
|
||||
animation: spinner_AtaB 0.75s infinite linear;
|
||||
}
|
||||
|
||||
@keyframes spinner_AtaB {
|
||||
100% {
|
||||
transform: rotate(360deg);
|
||||
}
|
||||
}
|
||||
</style>
|
||||
<path
|
||||
d="M12,1A11,11,0,1,0,23,12,11,11,0,0,0,12,1Zm0,19a8,8,0,1,1,8-8A8,8,0,0,1,12,20Z"
|
||||
opacity=".25"
|
||||
/>
|
||||
<path
|
||||
d="M10.14,1.16a11,11,0,0,0-9,8.92A1.59,1.59,0,0,0,2.46,12,1.52,1.52,0,0,0,4.11,10.7a8,8,0,0,1,6.66-6.61A1.42,1.42,0,0,0,12,2.69h0A1.57,1.57,0,0,0,10.14,1.16Z"
|
||||
class="spinner_ajPY"
|
||||
/>
|
||||
</svg>
|
||||
</div>
|
||||
{:else}
|
||||
<svg
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
viewBox="0 0 16 16"
|
||||
fill="currentColor"
|
||||
class="w-4 h-4"
|
||||
>
|
||||
<path
|
||||
d="M8.75 2.75a.75.75 0 0 0-1.5 0v5.69L5.03 6.22a.75.75 0 0 0-1.06 1.06l3.5 3.5a.75.75 0 0 0 1.06 0l3.5-3.5a.75.75 0 0 0-1.06-1.06L8.75 8.44V2.75Z"
|
||||
/>
|
||||
<path
|
||||
d="M3.5 9.75a.75.75 0 0 0-1.5 0v1.5A2.75 2.75 0 0 0 4.75 14h6.5A2.75 2.75 0 0 0 14 11.25v-1.5a.75.75 0 0 0-1.5 0v1.5c0 .69-.56 1.25-1.25 1.25h-6.5c-.69 0-1.25-.56-1.25-1.25v-1.5Z"
|
||||
/>
|
||||
</svg>
|
||||
{/if}
|
||||
</button>
|
||||
{/if}
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
{/if}
|
||||
|
||||
<div class="flex w-full">
|
||||
<div class="flex-1 mr-2">
|
||||
<select
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden p-2 border border-gray-300"
|
||||
bind:value={embeddingModel}
|
||||
required
|
||||
>
|
||||
<option value="" disabled selected>{$i18n.t('Select embedding model')}</option>
|
||||
<!-- Always show the current value first if it's not empty -->
|
||||
{#if embeddingModel && embeddingModel.trim() !== ''}
|
||||
<option value={embeddingModel} class="py-1 font-semibold">
|
||||
{embeddingModel}
|
||||
{#if embeddingEngine &&
|
||||
localRAGConfig.DOWNLOADED_EMBEDDING_MODELS[embeddingEngine] &&
|
||||
!localRAGConfig.DOWNLOADED_EMBEDDING_MODELS[embeddingEngine]?.includes(embeddingModel)}
|
||||
(custom)
|
||||
{/if}
|
||||
</option>
|
||||
{/if}
|
||||
|
||||
<!-- Then show all downloaded models from the selected engine -->
|
||||
{#if embeddingEngine && localRAGConfig.DOWNLOADED_EMBEDDING_MODELS[embeddingEngine]}
|
||||
{#each localRAGConfig.DOWNLOADED_EMBEDDING_MODELS[embeddingEngine] as model}
|
||||
{#if model !== embeddingModel} <!-- Skip the current model as it's already shown -->
|
||||
<option value={model} class="py-1">{model}</option>
|
||||
{/if}
|
||||
{/each}
|
||||
{/if}
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="mt-1 mb-1 text-xs text-gray-400 dark:text-gray-500">
|
||||
{$i18n.t(
|
||||
'Warning: If you update or change your embedding model, you will need to re-import all documents.'
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
{#if embeddingEngine === 'ollama' || embeddingEngine === 'openai'}
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Embedding Batch Size')}
|
||||
</div>
|
||||
|
||||
<div class="">
|
||||
<input
|
||||
bind:value={embeddingBatchSize}
|
||||
type="number"
|
||||
class=" bg-transparent text-center w-14 outline-none"
|
||||
min="-2"
|
||||
max="16000"
|
||||
step="1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
<div class="mb-3">
|
||||
<div class=" mb-2.5 text-base font-medium">{$i18n.t('Retrieval')}</div>
|
||||
|
||||
<hr class=" border-gray-100 dark:border-gray-850 my-2" />
|
||||
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">{$i18n.t('Full Context Mode')}</div>
|
||||
<div class="flex items-center relative">
|
||||
<Tooltip
|
||||
content={localRAGConfig.RAG_FULL_CONTEXT
|
||||
? $i18n.t(
|
||||
'Inject the entire content as context for comprehensive processing, this is recommended for complex queries.'
|
||||
)
|
||||
: $i18n.t(
|
||||
'Default to segmented retrieval for focused and relevant content extraction, this is recommended for most cases.'
|
||||
)}
|
||||
>
|
||||
<Switch bind:state={localRAGConfig.RAG_FULL_CONTEXT} />
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if !localRAGConfig.RAG_FULL_CONTEXT}
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">{$i18n.t('Hybrid Search')}</div>
|
||||
<div class="flex items-center relative">
|
||||
<Switch
|
||||
bind:state={localRAGConfig.ENABLE_RAG_HYBRID_SEARCH}
|
||||
on:change={() => {
|
||||
if (!localRAGConfig.ENABLE_RAG_HYBRID_SEARCH) {
|
||||
localRAGConfig.RAG_RERANKING_MODEL = "";
|
||||
}
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if localRAGConfig.ENABLE_RAG_HYBRID_SEARCH === true}
|
||||
<div class=" mb-2.5 flex flex-col w-full justify-between">
|
||||
<div class="flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Reranking Engine')}
|
||||
</div>
|
||||
<div class="flex items-center relative">
|
||||
<select
|
||||
class="dark:bg-gray-900 w-fit pr-8 rounded-sm px-2 p-1 text-xs bg-transparent outline-hidden text-right"
|
||||
bind:value={localRAGConfig.RAG_RERANKING_ENGINE}
|
||||
placeholder="Select a reranking model engine"
|
||||
on:change={(e) => {
|
||||
if (e.target.value === 'external') {
|
||||
localRAGConfig.RAG_RERANKING_MODEL = '';
|
||||
} else if (e.target.value === '') {
|
||||
localRAGConfig.RAG_RERANKING_MODEL = 'BAAI/bge-reranker-v2-m3';
|
||||
}
|
||||
}}
|
||||
>
|
||||
<option value="">{$i18n.t('Default (SentenceTransformers)')}</option>
|
||||
<option value="external">{$i18n.t('External')}</option>
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{#if localRAGConfig.RAG_RERANKING_ENGINE === 'external'}
|
||||
<div class="my-0.5 flex gap-2 pr-2">
|
||||
<input
|
||||
class="flex-1 w-full text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('API Base URL')}
|
||||
bind:value={localRAGConfig.RAG_EXTERNAL_RERANKER_URL}
|
||||
required
|
||||
/>
|
||||
|
||||
<SensitiveInput
|
||||
placeholder={$i18n.t('API Key')}
|
||||
bind:value={localRAGConfig.RAG_EXTERNAL_RERANKER_API_KEY}
|
||||
required={false}
|
||||
/>
|
||||
</div>
|
||||
{/if}
|
||||
</div>
|
||||
|
||||
{#if localRAGConfig.ENABLE_RAG_HYBRID_SEARCH === true}
|
||||
<div class=" mb-2.5 flex flex-col w-full">
|
||||
<div class=" mb-1 text-xs font-medium">{$i18n.t('Reranking Model')}</div>
|
||||
{#if $user?.role === 'admin'}
|
||||
<div class="">
|
||||
<div class="flex w-full">
|
||||
<div class="flex-1 mr-2">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
placeholder={$i18n.t('Set reranking model (e.g. {{model}})', {
|
||||
model: 'BAAI/bge-reranker-v2-m3'
|
||||
})}
|
||||
bind:value={localRAGConfig.RAG_RERANKING_MODEL}
|
||||
on:input={() => {
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
<div class="flex w-full">
|
||||
<div class="flex-1 mr-2">
|
||||
<select
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden p-2 border border-gray-300"
|
||||
bind:value={localRAGConfig.RAG_RERANKING_MODEL}
|
||||
required
|
||||
>
|
||||
<option value="" disabled selected>{$i18n.t('Select reranking model')}</option>
|
||||
<!-- Always show the current value first if it's not empty -->
|
||||
{#if localRAGConfig.RAG_RERANKING_MODEL && localRAGConfig.RAG_RERANKING_MODEL.trim() !== ''}
|
||||
<option value={localRAGConfig.RAG_RERANKING_MODEL} class="py-1 font-semibold">
|
||||
{localRAGConfig.RAG_RERANKING_MODEL}
|
||||
{#if localRAGConfig.RAG_RERANKING_ENGINE !== undefined &&
|
||||
localRAGConfig.DOWNLOADED_RERANKING_MODELS[localRAGConfig.RAG_RERANKING_ENGINE] &&
|
||||
!localRAGConfig.DOWNLOADED_RERANKING_MODELS[localRAGConfig.RAG_RERANKING_ENGINE]?.some(model => model.RAG_RERANKING_MODEL === localRAGConfig.RAG_RERANKING_MODEL)}
|
||||
(custom)
|
||||
{/if}
|
||||
</option>
|
||||
{/if}
|
||||
|
||||
<!-- Then show all downloaded models from the selected engine -->
|
||||
{#if localRAGConfig.RAG_RERANKING_ENGINE !== undefined && localRAGConfig.DOWNLOADED_RERANKING_MODELS[localRAGConfig.RAG_RERANKING_ENGINE]}
|
||||
{#each localRAGConfig.DOWNLOADED_RERANKING_MODELS[localRAGConfig.RAG_RERANKING_ENGINE] as model}
|
||||
{#if model !== localRAGConfig.RAG_RERANKING_MODEL} <!-- Skip the current model as it's already shown -->
|
||||
<option value={model} class="py-1">{model}</option>
|
||||
{/if}
|
||||
{/each}
|
||||
{/if}
|
||||
</select>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
|
||||
<div class=" mb-2.5 flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">{$i18n.t('Top K')}</div>
|
||||
<div class="flex items-center relative">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
type="number"
|
||||
placeholder={$i18n.t('Enter Top K')}
|
||||
bind:value={localRAGConfig.TOP_K}
|
||||
autocomplete="off"
|
||||
min="0"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="mb-2.5 flex w-full justify-between">
|
||||
<div class="self-center text-xs font-medium">{$i18n.t('Top K Reranker')}</div>
|
||||
<div class="flex items-center relative">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
type="number"
|
||||
placeholder={$i18n.t('Enter Top K Reranker')}
|
||||
bind:value={localRAGConfig.TOP_K_RERANKER}
|
||||
autocomplete="off"
|
||||
min="0"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
|
||||
{#if localRAGConfig.ENABLE_RAG_HYBRID_SEARCH === true}
|
||||
<div class=" mb-2.5 flex flex-col w-full justify-between">
|
||||
<div class=" flex w-full justify-between">
|
||||
<div class=" self-center text-xs font-medium">
|
||||
{$i18n.t('Relevance Threshold')}
|
||||
</div>
|
||||
<div class="flex items-center relative">
|
||||
<input
|
||||
class="flex-1 w-full rounded-lg text-sm bg-transparent outline-hidden"
|
||||
type="number"
|
||||
step="0.01"
|
||||
placeholder={$i18n.t('Enter Score')}
|
||||
bind:value={localRAGConfig.RELEVANCE_THRESHOLD}
|
||||
autocomplete="off"
|
||||
min="0.0"
|
||||
title={$i18n.t(
|
||||
'The score should be a value between 0.0 (0%) and 1.0 (100%).'
|
||||
)}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
<div class="mt-1 text-xs text-gray-400 dark:text-gray-500">
|
||||
{$i18n.t(
|
||||
'Note: If you set a minimum score, the search will only return documents with a score greater than or equal to the minimum score.'
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
{/if}
|
||||
|
||||
<div class=" mb-2.5 flex flex-col w-full justify-between">
|
||||
<div class=" mb-1 text-xs font-medium">{$i18n.t('RAG Template')}</div>
|
||||
<div class="flex w-full items-center relative">
|
||||
<Tooltip
|
||||
content={$i18n.t(
|
||||
'Leave empty to use the default prompt, or enter a custom prompt'
|
||||
)}
|
||||
placement="top-start"
|
||||
className="w-full"
|
||||
>
|
||||
<Textarea
|
||||
bind:value={localRAGConfig.RAG_TEMPLATE}
|
||||
placeholder={$i18n.t(
|
||||
'Leave empty to use the default prompt, or enter a custom prompt'
|
||||
)}
|
||||
/>
|
||||
</Tooltip>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
{/if}
|
||||
<div class="flex justify-end space-x-2">
|
||||
<button
|
||||
type="button"
|
||||
class="px-2 py-1 bg-gray-300 rounded-md dark:bg-gray-700"
|
||||
on:click={() => {
|
||||
show = false;
|
||||
onCancel();
|
||||
}}
|
||||
>
|
||||
{$i18n.t('Cancel')}
|
||||
</button>
|
||||
<button
|
||||
type="submit"
|
||||
class="px-2 py-1 bg-blue-600 text-white rounded-md"
|
||||
on:click={() => {
|
||||
show = false;
|
||||
submitHandler()}}
|
||||
|
||||
>
|
||||
{$i18n.t('Save')}
|
||||
</button>
|
||||
</div>
|
||||
</div>
|
||||
</Modal>
|
Loading…
Reference in New Issue
Block a user