mirror of
https://github.com/open-webui/open-webui
synced 2025-06-09 07:56:42 +00:00
revert
This commit is contained in:
parent
9b56b64cfa
commit
fd0170c179
@ -1,8 +1,9 @@
|
|||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import heapq
|
import uuid
|
||||||
from typing import Optional, Union
|
from typing import Optional, Union
|
||||||
|
|
||||||
|
import asyncio
|
||||||
import requests
|
import requests
|
||||||
|
|
||||||
from huggingface_hub import snapshot_download
|
from huggingface_hub import snapshot_download
|
||||||
@ -33,6 +34,8 @@ class VectorSearchRetriever(BaseRetriever):
|
|||||||
def _get_relevant_documents(
|
def _get_relevant_documents(
|
||||||
self,
|
self,
|
||||||
query: str,
|
query: str,
|
||||||
|
*,
|
||||||
|
run_manager: CallbackManagerForRetrieverRun,
|
||||||
) -> list[Document]:
|
) -> list[Document]:
|
||||||
result = VECTOR_DB_CLIENT.search(
|
result = VECTOR_DB_CLIENT.search(
|
||||||
collection_name=self.collection_name,
|
collection_name=self.collection_name,
|
||||||
@ -44,12 +47,15 @@ class VectorSearchRetriever(BaseRetriever):
|
|||||||
metadatas = result.metadatas[0]
|
metadatas = result.metadatas[0]
|
||||||
documents = result.documents[0]
|
documents = result.documents[0]
|
||||||
|
|
||||||
return [
|
results = []
|
||||||
|
for idx in range(len(ids)):
|
||||||
|
results.append(
|
||||||
Document(
|
Document(
|
||||||
metadata=metadatas[idx],
|
metadata=metadatas[idx],
|
||||||
page_content=documents[idx],
|
page_content=documents[idx],
|
||||||
) for idx in range(len(ids))
|
)
|
||||||
]
|
)
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
def query_doc(
|
def query_doc(
|
||||||
@ -58,11 +64,13 @@ def query_doc(
|
|||||||
k: int,
|
k: int,
|
||||||
):
|
):
|
||||||
try:
|
try:
|
||||||
if result := VECTOR_DB_CLIENT.search(
|
result = VECTOR_DB_CLIENT.search(
|
||||||
collection_name=collection_name,
|
collection_name=collection_name,
|
||||||
vectors=[query_embedding],
|
vectors=[query_embedding],
|
||||||
limit=k,
|
limit=k,
|
||||||
):
|
)
|
||||||
|
|
||||||
|
if result:
|
||||||
log.info(f"query_doc:result {result.ids} {result.metadatas}")
|
log.info(f"query_doc:result {result.ids} {result.metadatas}")
|
||||||
|
|
||||||
return result
|
return result
|
||||||
@ -127,39 +135,45 @@ def query_doc_with_hybrid_search(
|
|||||||
def merge_and_sort_query_results(
|
def merge_and_sort_query_results(
|
||||||
query_results: list[dict], k: int, reverse: bool = False
|
query_results: list[dict], k: int, reverse: bool = False
|
||||||
) -> list[dict]:
|
) -> list[dict]:
|
||||||
if not query_results:
|
# Initialize lists to store combined data
|
||||||
return {
|
combined_distances = []
|
||||||
"distances": [[]],
|
combined_documents = []
|
||||||
"documents": [[]],
|
combined_metadatas = []
|
||||||
"metadatas": [[]],
|
|
||||||
}
|
|
||||||
|
|
||||||
combined = (
|
for data in query_results:
|
||||||
(data.get("distances", [float('inf')])[0],
|
combined_distances.extend(data["distances"][0])
|
||||||
data.get("documents", [None])[0],
|
combined_documents.extend(data["documents"][0])
|
||||||
data.get("metadatas", [{}])[0])
|
combined_metadatas.extend(data["metadatas"][0])
|
||||||
for data in query_results
|
|
||||||
)
|
|
||||||
|
|
||||||
if reverse:
|
# Create a list of tuples (distance, document, metadata)
|
||||||
top_k = heapq.nlargest(k, combined, key=lambda x: x[0])
|
combined = list(zip(combined_distances, combined_documents, combined_metadatas))
|
||||||
|
|
||||||
|
# Sort the list based on distances
|
||||||
|
combined.sort(key=lambda x: x[0], reverse=reverse)
|
||||||
|
|
||||||
|
# We don't have anything :-(
|
||||||
|
if not combined:
|
||||||
|
sorted_distances = []
|
||||||
|
sorted_documents = []
|
||||||
|
sorted_metadatas = []
|
||||||
else:
|
else:
|
||||||
top_k = heapq.nsmallest(k, combined, key=lambda x: x[0])
|
# Unzip the sorted list
|
||||||
|
sorted_distances, sorted_documents, sorted_metadatas = zip(*combined)
|
||||||
|
|
||||||
if not top_k:
|
# Slicing the lists to include only k elements
|
||||||
return {
|
sorted_distances = list(sorted_distances)[:k]
|
||||||
"distances": [[]],
|
sorted_documents = list(sorted_documents)[:k]
|
||||||
"documents": [[]],
|
sorted_metadatas = list(sorted_metadatas)[:k]
|
||||||
"metadatas": [[]],
|
|
||||||
}
|
# Create the output dictionary
|
||||||
else:
|
result = {
|
||||||
sorted_distances, sorted_documents, sorted_metadatas = zip(*top_k)
|
|
||||||
return {
|
|
||||||
"distances": [sorted_distances],
|
"distances": [sorted_distances],
|
||||||
"documents": [sorted_documents],
|
"documents": [sorted_documents],
|
||||||
"metadatas": [sorted_metadatas],
|
"metadatas": [sorted_metadatas],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def query_collection(
|
def query_collection(
|
||||||
collection_names: list[str],
|
collection_names: list[str],
|
||||||
@ -171,18 +185,19 @@ def query_collection(
|
|||||||
for query in queries:
|
for query in queries:
|
||||||
query_embedding = embedding_function(query)
|
query_embedding = embedding_function(query)
|
||||||
for collection_name in collection_names:
|
for collection_name in collection_names:
|
||||||
if not collection_name:
|
if collection_name:
|
||||||
continue
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if result := query_doc(
|
result = query_doc(
|
||||||
collection_name=collection_name,
|
collection_name=collection_name,
|
||||||
k=k,
|
k=k,
|
||||||
query_embedding=query_embedding,
|
query_embedding=query_embedding,
|
||||||
):
|
)
|
||||||
|
if result is not None:
|
||||||
results.append(result.model_dump())
|
results.append(result.model_dump())
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
log.exception(f"Error when querying the collection: {e}")
|
log.exception(f"Error when querying the collection: {e}")
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
return merge_and_sort_query_results(results, k=k)
|
return merge_and_sort_query_results(results, k=k)
|
||||||
|
|
||||||
@ -198,8 +213,8 @@ def query_collection_with_hybrid_search(
|
|||||||
results = []
|
results = []
|
||||||
error = False
|
error = False
|
||||||
for collection_name in collection_names:
|
for collection_name in collection_names:
|
||||||
for query in queries:
|
|
||||||
try:
|
try:
|
||||||
|
for query in queries:
|
||||||
result = query_doc_with_hybrid_search(
|
result = query_doc_with_hybrid_search(
|
||||||
collection_name=collection_name,
|
collection_name=collection_name,
|
||||||
query=query,
|
query=query,
|
||||||
@ -244,10 +259,10 @@ def get_embedding_function(
|
|||||||
|
|
||||||
def generate_multiple(query, func):
|
def generate_multiple(query, func):
|
||||||
if isinstance(query, list):
|
if isinstance(query, list):
|
||||||
return [
|
embeddings = []
|
||||||
func(query[i : i + embedding_batch_size])
|
for i in range(0, len(query), embedding_batch_size):
|
||||||
for i in range(0, len(query), embedding_batch_size)
|
embeddings.extend(func(query[i : i + embedding_batch_size]))
|
||||||
]
|
return embeddings
|
||||||
else:
|
else:
|
||||||
return func(query)
|
return func(query)
|
||||||
|
|
||||||
@ -421,6 +436,7 @@ def generate_openai_batch_embeddings(
|
|||||||
def generate_ollama_batch_embeddings(
|
def generate_ollama_batch_embeddings(
|
||||||
model: str, texts: list[str], url: str, key: str = ""
|
model: str, texts: list[str], url: str, key: str = ""
|
||||||
) -> Optional[list[list[float]]]:
|
) -> Optional[list[list[float]]]:
|
||||||
|
try:
|
||||||
r = requests.post(
|
r = requests.post(
|
||||||
f"{url}/api/embed",
|
f"{url}/api/embed",
|
||||||
headers={
|
headers={
|
||||||
@ -429,19 +445,17 @@ def generate_ollama_batch_embeddings(
|
|||||||
},
|
},
|
||||||
json={"input": texts, "model": model},
|
json={"input": texts, "model": model},
|
||||||
)
|
)
|
||||||
try:
|
|
||||||
r.raise_for_status()
|
r.raise_for_status()
|
||||||
|
data = r.json()
|
||||||
|
|
||||||
|
if "embeddings" in data:
|
||||||
|
return data["embeddings"]
|
||||||
|
else:
|
||||||
|
raise "Something went wrong :/"
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
data = r.json()
|
|
||||||
|
|
||||||
if 'embeddings' not in data:
|
|
||||||
raise "Something went wrong :/"
|
|
||||||
|
|
||||||
return data['embeddings']
|
|
||||||
|
|
||||||
|
|
||||||
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
def generate_embeddings(engine: str, model: str, text: Union[str, list[str]], **kwargs):
|
||||||
url = kwargs.get("url", "")
|
url = kwargs.get("url", "")
|
||||||
|
Loading…
Reference in New Issue
Block a user