mirror of
https://github.com/open-webui/open-webui
synced 2025-06-26 18:26:48 +00:00
Merge pull request #7881 from gabriel-ecegi/dev
feat: Batch Processing for Large-Scale Document Import
This commit is contained in:
commit
9abae36264
@ -1,5 +1,4 @@
|
||||
import json
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional
|
||||
from pydantic import BaseModel
|
||||
from fastapi import APIRouter, Depends, HTTPException, status, Request
|
||||
import logging
|
||||
@ -12,11 +11,11 @@ from open_webui.models.knowledge import (
|
||||
)
|
||||
from open_webui.models.files import Files, FileModel
|
||||
from open_webui.retrieval.vector.connector import VECTOR_DB_CLIENT
|
||||
from open_webui.routers.retrieval import process_file, ProcessFileForm
|
||||
from open_webui.routers.retrieval import process_file, ProcessFileForm, process_files_batch, BatchProcessFilesForm
|
||||
|
||||
|
||||
from open_webui.constants import ERROR_MESSAGES
|
||||
from open_webui.utils.auth import get_admin_user, get_verified_user
|
||||
from open_webui.utils.auth import get_verified_user
|
||||
from open_webui.utils.access_control import has_access, has_permission
|
||||
|
||||
|
||||
@ -514,3 +513,85 @@ async def reset_knowledge_by_id(id: str, user=Depends(get_verified_user)):
|
||||
knowledge = Knowledges.update_knowledge_data_by_id(id=id, data={"file_ids": []})
|
||||
|
||||
return knowledge
|
||||
|
||||
|
||||
############################
|
||||
# AddFilesToKnowledge
|
||||
############################
|
||||
|
||||
@router.post("/{id}/files/batch/add", response_model=Optional[KnowledgeFilesResponse])
|
||||
def add_files_to_knowledge_batch(
|
||||
id: str,
|
||||
form_data: list[KnowledgeFileIdForm],
|
||||
user=Depends(get_verified_user),
|
||||
):
|
||||
"""
|
||||
Add multiple files to a knowledge base
|
||||
"""
|
||||
knowledge = Knowledges.get_knowledge_by_id(id=id)
|
||||
if not knowledge:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=ERROR_MESSAGES.NOT_FOUND,
|
||||
)
|
||||
|
||||
if knowledge.user_id != user.id and user.role != "admin":
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=ERROR_MESSAGES.ACCESS_PROHIBITED,
|
||||
)
|
||||
|
||||
# Get files content
|
||||
print(f"files/batch/add - {len(form_data)} files")
|
||||
files: List[FileModel] = []
|
||||
for form in form_data:
|
||||
file = Files.get_file_by_id(form.file_id)
|
||||
if not file:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=f"File {form.file_id} not found",
|
||||
)
|
||||
files.append(file)
|
||||
|
||||
# Process files
|
||||
try:
|
||||
result = process_files_batch(BatchProcessFilesForm(
|
||||
files=files,
|
||||
collection_name=id
|
||||
))
|
||||
except Exception as e:
|
||||
log.error(f"add_files_to_knowledge_batch: Exception occurred: {e}", exc_info=True)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=str(e)
|
||||
)
|
||||
|
||||
# Add successful files to knowledge base
|
||||
data = knowledge.data or {}
|
||||
existing_file_ids = data.get("file_ids", [])
|
||||
|
||||
# Only add files that were successfully processed
|
||||
successful_file_ids = [r.file_id for r in result.results if r.status == "completed"]
|
||||
for file_id in successful_file_ids:
|
||||
if file_id not in existing_file_ids:
|
||||
existing_file_ids.append(file_id)
|
||||
|
||||
data["file_ids"] = existing_file_ids
|
||||
knowledge = Knowledges.update_knowledge_data_by_id(id=id, data=data)
|
||||
|
||||
# If there were any errors, include them in the response
|
||||
if result.errors:
|
||||
error_details = [f"{err.file_id}: {err.error}" for err in result.errors]
|
||||
return KnowledgeFilesResponse(
|
||||
**knowledge.model_dump(),
|
||||
files=Files.get_files_by_ids(existing_file_ids),
|
||||
warnings={
|
||||
"message": "Some files failed to process",
|
||||
"errors": error_details
|
||||
}
|
||||
)
|
||||
|
||||
return KnowledgeFilesResponse(
|
||||
**knowledge.model_dump(),
|
||||
files=Files.get_files_by_ids(existing_file_ids)
|
||||
)
|
||||
|
@ -7,7 +7,7 @@ import shutil
|
||||
import uuid
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from typing import Iterator, Optional, Sequence, Union
|
||||
from typing import Iterator, List, Optional, Sequence, Union
|
||||
|
||||
from fastapi import (
|
||||
Depends,
|
||||
@ -28,7 +28,7 @@ import tiktoken
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
|
||||
from langchain_core.documents import Document
|
||||
|
||||
from open_webui.models.files import Files
|
||||
from open_webui.models.files import FileModel, Files
|
||||
from open_webui.models.knowledge import Knowledges
|
||||
from open_webui.storage.provider import Storage
|
||||
|
||||
@ -1428,3 +1428,97 @@ if ENV == "dev":
|
||||
@router.get("/ef/{text}")
|
||||
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
|
||||
return {"result": request.app.state.EMBEDDING_FUNCTION(text)}
|
||||
|
||||
class BatchProcessFilesForm(BaseModel):
|
||||
files: List[FileModel]
|
||||
collection_name: str
|
||||
|
||||
class BatchProcessFilesResult(BaseModel):
|
||||
file_id: str
|
||||
status: str
|
||||
error: Optional[str] = None
|
||||
|
||||
class BatchProcessFilesResponse(BaseModel):
|
||||
results: List[BatchProcessFilesResult]
|
||||
errors: List[BatchProcessFilesResult]
|
||||
|
||||
@router.post("/process/files/batch")
|
||||
def process_files_batch(
|
||||
form_data: BatchProcessFilesForm,
|
||||
user=Depends(get_verified_user),
|
||||
) -> BatchProcessFilesResponse:
|
||||
"""
|
||||
Process a batch of files and save them to the vector database.
|
||||
"""
|
||||
results: List[BatchProcessFilesResult] = []
|
||||
errors: List[BatchProcessFilesResult] = []
|
||||
collection_name = form_data.collection_name
|
||||
|
||||
# Prepare all documents first
|
||||
all_docs: List[Document] = []
|
||||
for file in form_data.files:
|
||||
try:
|
||||
text_content = file.data.get("content", "")
|
||||
|
||||
docs: List[Document] = [
|
||||
Document(
|
||||
page_content=text_content.replace("<br/>", "\n"),
|
||||
metadata={
|
||||
**file.meta,
|
||||
"name": file.filename,
|
||||
"created_by": file.user_id,
|
||||
"file_id": file.id,
|
||||
"source": file.filename,
|
||||
},
|
||||
)
|
||||
]
|
||||
|
||||
hash = calculate_sha256_string(text_content)
|
||||
Files.update_file_hash_by_id(file.id, hash)
|
||||
Files.update_file_data_by_id(file.id, {"content": text_content})
|
||||
|
||||
all_docs.extend(docs)
|
||||
results.append(BatchProcessFilesResult(
|
||||
file_id=file.id,
|
||||
status="prepared"
|
||||
))
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
|
||||
errors.append(BatchProcessFilesResult(
|
||||
file_id=file.id,
|
||||
status="failed",
|
||||
error=str(e)
|
||||
))
|
||||
|
||||
# Save all documents in one batch
|
||||
if all_docs:
|
||||
try:
|
||||
save_docs_to_vector_db(
|
||||
docs=all_docs,
|
||||
collection_name=collection_name,
|
||||
add=True
|
||||
)
|
||||
|
||||
# Update all files with collection name
|
||||
for result in results:
|
||||
Files.update_file_metadata_by_id(
|
||||
result.file_id,
|
||||
{"collection_name": collection_name}
|
||||
)
|
||||
result.status = "completed"
|
||||
|
||||
except Exception as e:
|
||||
log.error(f"process_files_batch: Error saving documents to vector DB: {str(e)}")
|
||||
for result in results:
|
||||
result.status = "failed"
|
||||
errors.append(BatchProcessFilesResult(
|
||||
file_id=result.file_id,
|
||||
error=str(e)
|
||||
))
|
||||
|
||||
return BatchProcessFilesResponse(
|
||||
results=results,
|
||||
errors=errors
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user