mirror of
https://github.com/open-webui/open-webui
synced 2025-05-19 04:43:00 +00:00
fix: opensearch vector db query structures, result mapping, filters, bulk query actions, knn_vector usage
This commit is contained in:
parent
3b70cd64d7
commit
6cb0c0339a
@ -1,4 +1,5 @@
|
|||||||
from opensearchpy import OpenSearch
|
from opensearchpy import OpenSearch
|
||||||
|
from opensearchpy.helpers import bulk
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
from open_webui.retrieval.vector.main import VectorItem, SearchResult, GetResult
|
||||||
@ -21,7 +22,13 @@ class OpenSearchClient:
|
|||||||
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _get_index_name(self, collection_name: str) -> str:
|
||||||
|
return f"{self.index_prefix}_{collection_name}"
|
||||||
|
|
||||||
def _result_to_get_result(self, result) -> GetResult:
|
def _result_to_get_result(self, result) -> GetResult:
|
||||||
|
if not result["hits"]["hits"]:
|
||||||
|
return None
|
||||||
|
|
||||||
ids = []
|
ids = []
|
||||||
documents = []
|
documents = []
|
||||||
metadatas = []
|
metadatas = []
|
||||||
@ -31,9 +38,12 @@ class OpenSearchClient:
|
|||||||
documents.append(hit["_source"].get("text"))
|
documents.append(hit["_source"].get("text"))
|
||||||
metadatas.append(hit["_source"].get("metadata"))
|
metadatas.append(hit["_source"].get("metadata"))
|
||||||
|
|
||||||
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
return GetResult(ids=[ids], documents=[documents], metadatas=[metadatas])
|
||||||
|
|
||||||
def _result_to_search_result(self, result) -> SearchResult:
|
def _result_to_search_result(self, result) -> SearchResult:
|
||||||
|
if not result["hits"]["hits"]:
|
||||||
|
return None
|
||||||
|
|
||||||
ids = []
|
ids = []
|
||||||
distances = []
|
distances = []
|
||||||
documents = []
|
documents = []
|
||||||
@ -46,25 +56,32 @@ class OpenSearchClient:
|
|||||||
metadatas.append(hit["_source"].get("metadata"))
|
metadatas.append(hit["_source"].get("metadata"))
|
||||||
|
|
||||||
return SearchResult(
|
return SearchResult(
|
||||||
ids=ids, distances=distances, documents=documents, metadatas=metadatas
|
ids=[ids], distances=[distances], documents=[documents], metadatas=[metadatas]
|
||||||
)
|
)
|
||||||
|
|
||||||
def _create_index(self, collection_name: str, dimension: int):
|
def _create_index(self, collection_name: str, dimension: int):
|
||||||
body = {
|
body = {
|
||||||
|
"settings": {
|
||||||
|
"index": {
|
||||||
|
"knn": True
|
||||||
|
}
|
||||||
|
},
|
||||||
"mappings": {
|
"mappings": {
|
||||||
"properties": {
|
"properties": {
|
||||||
"id": {"type": "keyword"},
|
"id": {"type": "keyword"},
|
||||||
"vector": {
|
"vector": {
|
||||||
"type": "dense_vector",
|
"type": "knn_vector",
|
||||||
"dims": dimension, # Adjust based on your vector dimensions
|
"dimension": dimension, # Adjust based on your vector dimensions
|
||||||
"index": true,
|
"index": True,
|
||||||
"similarity": "faiss",
|
"similarity": "faiss",
|
||||||
"method": {
|
"method": {
|
||||||
"name": "hnsw",
|
"name": "hnsw",
|
||||||
"space_type": "ip", # Use inner product to approximate cosine similarity
|
"space_type": "innerproduct", # Use inner product to approximate cosine similarity
|
||||||
"engine": "faiss",
|
"engine": "faiss",
|
||||||
"ef_construction": 128,
|
"parameters": {
|
||||||
"m": 16,
|
"ef_construction": 128,
|
||||||
|
"m": 16,
|
||||||
|
}
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
"text": {"type": "text"},
|
"text": {"type": "text"},
|
||||||
@ -73,7 +90,7 @@ class OpenSearchClient:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
self.client.indices.create(
|
self.client.indices.create(
|
||||||
index=f"{self.index_prefix}_{collection_name}", body=body
|
index=self._get_index_name(collection_name), body=body
|
||||||
)
|
)
|
||||||
|
|
||||||
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
||||||
@ -84,38 +101,49 @@ class OpenSearchClient:
|
|||||||
# has_collection here means has index.
|
# has_collection here means has index.
|
||||||
# We are simply adapting to the norms of the other DBs.
|
# We are simply adapting to the norms of the other DBs.
|
||||||
return self.client.indices.exists(
|
return self.client.indices.exists(
|
||||||
index=f"{self.index_prefix}_{collection_name}"
|
index=self._get_index_name(collection_name)
|
||||||
)
|
)
|
||||||
|
|
||||||
def delete_colleciton(self, collection_name: str):
|
def delete_collection(self, collection_name: str):
|
||||||
# delete_collection here means delete index.
|
# delete_collection here means delete index.
|
||||||
# We are simply adapting to the norms of the other DBs.
|
# We are simply adapting to the norms of the other DBs.
|
||||||
self.client.indices.delete(index=f"{self.index_prefix}_{collection_name}")
|
self.client.indices.delete(index=self._get_index_name(collection_name))
|
||||||
|
|
||||||
def search(
|
def search(
|
||||||
self, collection_name: str, vectors: list[list[float]], limit: int
|
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
||||||
) -> Optional[SearchResult]:
|
) -> Optional[SearchResult]:
|
||||||
query = {
|
try:
|
||||||
"size": limit,
|
if not self.has_collection(collection_name):
|
||||||
"_source": ["text", "metadata"],
|
return None
|
||||||
"query": {
|
|
||||||
"script_score": {
|
|
||||||
"query": {"match_all": {}},
|
|
||||||
"script": {
|
|
||||||
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
|
||||||
"params": {
|
|
||||||
"vector": vectors[0]
|
|
||||||
}, # Assuming single query vector
|
|
||||||
},
|
|
||||||
}
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
result = self.client.search(
|
query = {
|
||||||
index=f"{self.index_prefix}_{collection_name}", body=query
|
"size": limit,
|
||||||
)
|
"_source": ["text", "metadata"],
|
||||||
|
"query": {
|
||||||
|
"script_score": {
|
||||||
|
"query": {
|
||||||
|
"match_all": {}
|
||||||
|
},
|
||||||
|
"script": {
|
||||||
|
"source": "cosineSimilarity(params.query_value, doc[params.field]) + 1.0",
|
||||||
|
"params": {
|
||||||
|
"field": "vector",
|
||||||
|
"query_value": vectors[0]
|
||||||
|
}, # Assuming single query vector
|
||||||
|
},
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
return self._result_to_search_result(result)
|
result = self.client.search(
|
||||||
|
index=self._get_index_name(collection_name),
|
||||||
|
body=query
|
||||||
|
)
|
||||||
|
|
||||||
|
return self._result_to_search_result(result)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return None
|
||||||
|
|
||||||
def query(
|
def query(
|
||||||
self, collection_name: str, filter: dict, limit: Optional[int] = None
|
self, collection_name: str, filter: dict, limit: Optional[int] = None
|
||||||
@ -124,18 +152,26 @@ class OpenSearchClient:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
query_body = {
|
query_body = {
|
||||||
"query": {"bool": {"filter": []}},
|
"query": {
|
||||||
|
"bool": {
|
||||||
|
"filter": []
|
||||||
|
}
|
||||||
|
},
|
||||||
"_source": ["text", "metadata"],
|
"_source": ["text", "metadata"],
|
||||||
}
|
}
|
||||||
|
|
||||||
for field, value in filter.items():
|
for field, value in filter.items():
|
||||||
query_body["query"]["bool"]["filter"].append({"term": {field: value}})
|
query_body["query"]["bool"]["filter"].append({
|
||||||
|
"match": {
|
||||||
|
"metadata." + str(field): value
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
size = limit if limit else 10
|
size = limit if limit else 10
|
||||||
|
|
||||||
try:
|
try:
|
||||||
result = self.client.search(
|
result = self.client.search(
|
||||||
index=f"{self.index_prefix}_{collection_name}",
|
index=self._get_index_name(collection_name),
|
||||||
body=query_body,
|
body=query_body,
|
||||||
size=size,
|
size=size,
|
||||||
)
|
)
|
||||||
@ -146,14 +182,14 @@ class OpenSearchClient:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
def _create_index_if_not_exists(self, collection_name: str, dimension: int):
|
def _create_index_if_not_exists(self, collection_name: str, dimension: int):
|
||||||
if not self.has_index(collection_name):
|
if not self.has_collection(collection_name):
|
||||||
self._create_index(collection_name, dimension)
|
self._create_index(collection_name, dimension)
|
||||||
|
|
||||||
def get(self, collection_name: str) -> Optional[GetResult]:
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
||||||
query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
|
query = {"query": {"match_all": {}}, "_source": ["text", "metadata"]}
|
||||||
|
|
||||||
result = self.client.search(
|
result = self.client.search(
|
||||||
index=f"{self.index_prefix}_{collection_name}", body=query
|
index=self._get_index_name(collection_name), body=query
|
||||||
)
|
)
|
||||||
return self._result_to_get_result(result)
|
return self._result_to_get_result(result)
|
||||||
|
|
||||||
@ -165,18 +201,18 @@ class OpenSearchClient:
|
|||||||
for batch in self._create_batches(items):
|
for batch in self._create_batches(items):
|
||||||
actions = [
|
actions = [
|
||||||
{
|
{
|
||||||
"index": {
|
"_op_type": "index",
|
||||||
"_id": item["id"],
|
"_index": self._get_index_name(collection_name),
|
||||||
"_source": {
|
"_id": item["id"],
|
||||||
"vector": item["vector"],
|
"_source": {
|
||||||
"text": item["text"],
|
"vector": item["vector"],
|
||||||
"metadata": item["metadata"],
|
"text": item["text"],
|
||||||
},
|
"metadata": item["metadata"],
|
||||||
}
|
},
|
||||||
}
|
}
|
||||||
for item in batch
|
for item in batch
|
||||||
]
|
]
|
||||||
self.client.bulk(actions)
|
bulk(self.client, actions)
|
||||||
|
|
||||||
def upsert(self, collection_name: str, items: list[VectorItem]):
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
||||||
self._create_index_if_not_exists(
|
self._create_index_if_not_exists(
|
||||||
@ -186,26 +222,46 @@ class OpenSearchClient:
|
|||||||
for batch in self._create_batches(items):
|
for batch in self._create_batches(items):
|
||||||
actions = [
|
actions = [
|
||||||
{
|
{
|
||||||
"index": {
|
"_op_type": "update",
|
||||||
"_id": item["id"],
|
"_index": self._get_index_name(collection_name),
|
||||||
"_index": f"{self.index_prefix}_{collection_name}",
|
"_id": item["id"],
|
||||||
"_source": {
|
"doc": {
|
||||||
"vector": item["vector"],
|
"vector": item["vector"],
|
||||||
"text": item["text"],
|
"text": item["text"],
|
||||||
"metadata": item["metadata"],
|
"metadata": item["metadata"],
|
||||||
},
|
},
|
||||||
}
|
"doc_as_upsert": True,
|
||||||
}
|
}
|
||||||
for item in batch
|
for item in batch
|
||||||
]
|
]
|
||||||
self.client.bulk(actions)
|
bulk(self.client, actions)
|
||||||
|
|
||||||
def delete(self, collection_name: str, ids: list[str]):
|
def delete(self, collection_name: str, ids: Optional[list[str]] = None, filter: Optional[dict] = None):
|
||||||
actions = [
|
if ids:
|
||||||
{"delete": {"_index": f"{self.index_prefix}_{collection_name}", "_id": id}}
|
actions = [
|
||||||
for id in ids
|
{
|
||||||
]
|
"_op_type": "delete",
|
||||||
self.client.bulk(body=actions)
|
"_index": self._get_index_name(collection_name),
|
||||||
|
"_id": id,
|
||||||
|
}
|
||||||
|
for id in ids
|
||||||
|
]
|
||||||
|
bulk(self.client, actions)
|
||||||
|
elif filter:
|
||||||
|
query_body = {
|
||||||
|
"query": {
|
||||||
|
"bool": {
|
||||||
|
"filter": []
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
for field, value in filter.items():
|
||||||
|
query_body["query"]["bool"]["filter"].append({
|
||||||
|
"match": {
|
||||||
|
"metadata." + str(field): value
|
||||||
|
}
|
||||||
|
})
|
||||||
|
self.client.delete_by_query(index=self._get_index_name(collection_name), body=query_body)
|
||||||
|
|
||||||
def reset(self):
|
def reset(self):
|
||||||
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
||||||
|
Loading…
Reference in New Issue
Block a user