mirror of
https://github.com/open-webui/open-webui
synced 2025-06-22 18:07:17 +00:00
Merge 2f5a359c43
into a21519f8f2
This commit is contained in:
commit
6860c917ff
@ -1800,6 +1800,10 @@ ENABLE_QDRANT_MULTITENANCY_MODE = (
|
|||||||
os.environ.get("ENABLE_QDRANT_MULTITENANCY_MODE", "false").lower() == "true"
|
os.environ.get("ENABLE_QDRANT_MULTITENANCY_MODE", "false").lower() == "true"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
WEAVIATE_HTTP_HOST = os.environ.get("WEAVIATE_HTTP_HOST", "")
|
||||||
|
WEAVIATE_HTTP_PORT = int(os.environ.get("WEAVIATE_HTTP_PORT", "8080"))
|
||||||
|
WEAVIATE_GRPC_PORT = int(os.environ.get("WEAVIATE_GRPC_PORT", "50051"))
|
||||||
|
|
||||||
# OpenSearch
|
# OpenSearch
|
||||||
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
|
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
|
||||||
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", "true").lower() == "true"
|
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", "true").lower() == "true"
|
||||||
|
335
backend/open_webui/retrieval/vector/dbs/weaviate.py
Normal file
335
backend/open_webui/retrieval/vector/dbs/weaviate.py
Normal file
@ -0,0 +1,335 @@
|
|||||||
|
import weaviate
|
||||||
|
import re
|
||||||
|
import uuid
|
||||||
|
from typing import Any, Dict, List, Optional, Union
|
||||||
|
|
||||||
|
from open_webui.retrieval.vector.main import (
|
||||||
|
VectorDBBase,
|
||||||
|
VectorItem,
|
||||||
|
SearchResult,
|
||||||
|
GetResult,
|
||||||
|
)
|
||||||
|
from open_webui.config import WEAVIATE_HTTP_HOST, WEAVIATE_HTTP_PORT, WEAVIATE_GRPC_PORT
|
||||||
|
|
||||||
|
|
||||||
|
def _convert_uuids_to_strings(obj: Any) -> Any:
|
||||||
|
"""
|
||||||
|
Recursively convert UUID objects to strings in nested data structures.
|
||||||
|
|
||||||
|
This function handles:
|
||||||
|
- UUID objects -> string
|
||||||
|
- Dictionaries with UUID values
|
||||||
|
- Lists/Tuples with UUID values
|
||||||
|
- Nested combinations of the above
|
||||||
|
|
||||||
|
Args:
|
||||||
|
obj: Any object that might contain UUIDs
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The same object structure with UUIDs converted to strings
|
||||||
|
"""
|
||||||
|
if isinstance(obj, uuid.UUID):
|
||||||
|
return str(obj)
|
||||||
|
elif isinstance(obj, dict):
|
||||||
|
return {key: _convert_uuids_to_strings(value) for key, value in obj.items()}
|
||||||
|
elif isinstance(obj, (list, tuple)):
|
||||||
|
return type(obj)(_convert_uuids_to_strings(item) for item in obj)
|
||||||
|
elif isinstance(obj, (str, int, float, bool, type(None))):
|
||||||
|
return obj
|
||||||
|
else:
|
||||||
|
return obj
|
||||||
|
|
||||||
|
|
||||||
|
class WeaviateClient(VectorDBBase):
|
||||||
|
def __init__(self):
|
||||||
|
self.url = WEAVIATE_HTTP_HOST
|
||||||
|
try:
|
||||||
|
self.client = weaviate.connect_to_local(
|
||||||
|
host=self.url,
|
||||||
|
port=WEAVIATE_HTTP_PORT,
|
||||||
|
grpc_port=WEAVIATE_GRPC_PORT,
|
||||||
|
)
|
||||||
|
self.client.connect()
|
||||||
|
except Exception as e:
|
||||||
|
raise ConnectionError(f"Failed to connect to Weaviate: {e}") from e
|
||||||
|
|
||||||
|
def _sanitize_collection_name(self, collection_name: str) -> str:
|
||||||
|
"""Sanitize collection name to be a valid Weaviate class name."""
|
||||||
|
if not isinstance(collection_name, str) or not collection_name.strip():
|
||||||
|
raise ValueError("Collection name must be a non-empty string")
|
||||||
|
|
||||||
|
# Requirements for a valid Weaviate class name:
|
||||||
|
# The collection name must begin with a capital letter.
|
||||||
|
# The name can only contain letters, numbers, and the underscore (_) character. Spaces are not allowed.
|
||||||
|
|
||||||
|
# Replace hyphens with underscores and keep only alphanumeric characters
|
||||||
|
name = re.sub(r'[^a-zA-Z0-9_]', '', collection_name.replace("-", "_"))
|
||||||
|
name = name.strip("_")
|
||||||
|
|
||||||
|
if not name:
|
||||||
|
raise ValueError("Could not sanitize collection name to be a valid Weaviate class name")
|
||||||
|
|
||||||
|
# Ensure it starts with a letter and is capitalized
|
||||||
|
if not name[0].isalpha():
|
||||||
|
name = "C" + name
|
||||||
|
|
||||||
|
return name[0].upper() + name[1:]
|
||||||
|
|
||||||
|
def has_collection(self, collection_name: str) -> bool:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
return self.client.collections.exists(sane_collection_name)
|
||||||
|
|
||||||
|
def delete_collection(self, collection_name: str) -> None:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if self.client.collections.exists(sane_collection_name):
|
||||||
|
self.client.collections.delete(sane_collection_name)
|
||||||
|
|
||||||
|
def _create_collection(self, collection_name: str) -> None:
|
||||||
|
self.client.collections.create(
|
||||||
|
name=collection_name,
|
||||||
|
vectorizer_config=weaviate.classes.config.Configure.Vectorizer.none(),
|
||||||
|
properties=[
|
||||||
|
weaviate.classes.config.Property(name="text", data_type=weaviate.classes.config.DataType.TEXT),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
self._create_collection(sane_collection_name)
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
|
||||||
|
with collection.batch.fixed_size(batch_size=100) as batch:
|
||||||
|
for item in items:
|
||||||
|
# Use item["id"] if it's a valid UUID, otherwise generate one
|
||||||
|
item_uuid = None
|
||||||
|
if item["id"]:
|
||||||
|
try:
|
||||||
|
# Convert to UUID first to validate, then back to string
|
||||||
|
validated_uuid = uuid.UUID(str(item["id"]))
|
||||||
|
item_uuid = str(validated_uuid)
|
||||||
|
except (ValueError, TypeError):
|
||||||
|
item_uuid = str(uuid.uuid4())
|
||||||
|
else:
|
||||||
|
item_uuid = str(uuid.uuid4())
|
||||||
|
|
||||||
|
properties = {"text": item["text"]}
|
||||||
|
if item["metadata"]:
|
||||||
|
# Convert any UUID objects in metadata to strings
|
||||||
|
clean_metadata = _convert_uuids_to_strings(item["metadata"])
|
||||||
|
properties.update(clean_metadata)
|
||||||
|
|
||||||
|
batch.add_object(
|
||||||
|
properties=properties,
|
||||||
|
uuid=item_uuid,
|
||||||
|
vector=item["vector"]
|
||||||
|
)
|
||||||
|
|
||||||
|
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
self._create_collection(sane_collection_name)
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
|
||||||
|
with collection.batch.fixed_size(batch_size=100) as batch:
|
||||||
|
for item in items:
|
||||||
|
# Use item["id"] if provided and valid UUID format
|
||||||
|
item_uuid = None
|
||||||
|
if item["id"]:
|
||||||
|
try:
|
||||||
|
# Convert to UUID first to validate, then back to string
|
||||||
|
validated_uuid = uuid.UUID(str(item["id"]))
|
||||||
|
item_uuid = str(validated_uuid)
|
||||||
|
except (ValueError, TypeError):
|
||||||
|
pass
|
||||||
|
|
||||||
|
properties = {"text": item["text"]}
|
||||||
|
if item["metadata"]:
|
||||||
|
# Convert any UUID objects in metadata to strings
|
||||||
|
clean_metadata = _convert_uuids_to_strings(item["metadata"])
|
||||||
|
properties.update(clean_metadata)
|
||||||
|
|
||||||
|
batch.add_object(
|
||||||
|
properties=properties,
|
||||||
|
uuid=item_uuid, # None means Weaviate will auto-generate
|
||||||
|
vector=item["vector"]
|
||||||
|
)
|
||||||
|
|
||||||
|
def search(
|
||||||
|
self, collection_name: str, vectors: List[List[Union[float, int]]], limit: int
|
||||||
|
) -> Optional[SearchResult]:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
return None
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
all_ids: List[List[str]] = []
|
||||||
|
all_documents: List[List[str]] = []
|
||||||
|
all_metadatas: List[List[Any]] = []
|
||||||
|
all_distances: List[List[float | int]] = []
|
||||||
|
|
||||||
|
for vector_embedding in vectors:
|
||||||
|
try:
|
||||||
|
response = collection.query.near_vector(
|
||||||
|
near_vector=vector_embedding,
|
||||||
|
limit=limit,
|
||||||
|
return_metadata=weaviate.classes.query.MetadataQuery(distance=True),
|
||||||
|
)
|
||||||
|
except Exception:
|
||||||
|
# Append empty results for this query vector
|
||||||
|
all_ids.append([])
|
||||||
|
all_documents.append([])
|
||||||
|
all_metadatas.append([])
|
||||||
|
all_distances.append([])
|
||||||
|
continue
|
||||||
|
|
||||||
|
batch_ids: List[str] = []
|
||||||
|
batch_documents: List[str] = []
|
||||||
|
batch_metadatas: List[Any] = []
|
||||||
|
batch_distances: List[float | int] = []
|
||||||
|
|
||||||
|
for obj in response.objects:
|
||||||
|
batch_ids.append(str(obj.uuid))
|
||||||
|
|
||||||
|
current_properties = dict(obj.properties) if obj.properties else {}
|
||||||
|
doc_text = current_properties.pop("text", "")
|
||||||
|
batch_documents.append(doc_text)
|
||||||
|
# Convert any UUID objects in metadata to strings
|
||||||
|
clean_properties = _convert_uuids_to_strings(current_properties)
|
||||||
|
batch_metadatas.append(clean_properties)
|
||||||
|
|
||||||
|
if obj.metadata and obj.metadata.distance is not None:
|
||||||
|
batch_distances.append(obj.metadata.distance)
|
||||||
|
else:
|
||||||
|
batch_distances.append(float('inf'))
|
||||||
|
|
||||||
|
all_ids.append(batch_ids)
|
||||||
|
all_documents.append(batch_documents)
|
||||||
|
all_metadatas.append(batch_metadatas)
|
||||||
|
all_distances.append(batch_distances)
|
||||||
|
|
||||||
|
return SearchResult(
|
||||||
|
ids=all_ids,
|
||||||
|
documents=all_documents,
|
||||||
|
metadatas=all_metadatas,
|
||||||
|
distances=all_distances
|
||||||
|
)
|
||||||
|
|
||||||
|
def query(
|
||||||
|
self, collection_name: str, filter: Dict, limit: Optional[int] = None
|
||||||
|
) -> Optional[GetResult]:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
return None
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
|
||||||
|
# Simple filter handling - only support basic equality
|
||||||
|
weaviate_filter = None
|
||||||
|
if filter:
|
||||||
|
for key, value in filter.items():
|
||||||
|
prop_filter = weaviate.classes.query.Filter.by_property(name=key).equal(value)
|
||||||
|
if weaviate_filter is None:
|
||||||
|
weaviate_filter = prop_filter
|
||||||
|
else:
|
||||||
|
weaviate_filter = weaviate.classes.query.Filter.all_of([weaviate_filter, prop_filter])
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = collection.query.fetch_objects(
|
||||||
|
filters=weaviate_filter,
|
||||||
|
limit=limit,
|
||||||
|
)
|
||||||
|
except Exception:
|
||||||
|
return None
|
||||||
|
|
||||||
|
ids: List[str] = []
|
||||||
|
documents: List[str] = []
|
||||||
|
metadatas: List[Any] = []
|
||||||
|
|
||||||
|
for obj in response.objects:
|
||||||
|
ids.append(str(obj.uuid))
|
||||||
|
current_properties = dict(obj.properties) if obj.properties else {}
|
||||||
|
doc_text = current_properties.pop("text", "")
|
||||||
|
documents.append(doc_text)
|
||||||
|
# Convert any UUID objects in metadata to strings
|
||||||
|
clean_properties = _convert_uuids_to_strings(current_properties)
|
||||||
|
metadatas.append(clean_properties)
|
||||||
|
|
||||||
|
return GetResult(
|
||||||
|
ids=[ids],
|
||||||
|
documents=[documents],
|
||||||
|
metadatas=[metadatas]
|
||||||
|
)
|
||||||
|
|
||||||
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
return None
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
|
||||||
|
ids: List[str] = []
|
||||||
|
documents: List[str] = []
|
||||||
|
metadatas: List[Any] = []
|
||||||
|
|
||||||
|
try:
|
||||||
|
for item in collection.iterator():
|
||||||
|
ids.append(str(item.uuid))
|
||||||
|
current_properties = dict(item.properties) if item.properties else {}
|
||||||
|
doc_text = current_properties.pop("text", "")
|
||||||
|
documents.append(doc_text)
|
||||||
|
# Convert any UUID objects in metadata to strings
|
||||||
|
clean_properties = _convert_uuids_to_strings(current_properties)
|
||||||
|
metadatas.append(clean_properties)
|
||||||
|
except Exception:
|
||||||
|
return GetResult(ids=[[]], documents=[[]], metadatas=[[]])
|
||||||
|
|
||||||
|
if not ids:
|
||||||
|
return GetResult(ids=[[]], documents=[[]], metadatas=[[]])
|
||||||
|
|
||||||
|
return GetResult(
|
||||||
|
ids=[ids],
|
||||||
|
documents=[documents],
|
||||||
|
metadatas=[metadatas]
|
||||||
|
)
|
||||||
|
|
||||||
|
def delete(
|
||||||
|
self,
|
||||||
|
collection_name: str,
|
||||||
|
ids: Optional[List[str]] = None,
|
||||||
|
filter: Optional[Dict] = None,
|
||||||
|
) -> None:
|
||||||
|
sane_collection_name = self._sanitize_collection_name(collection_name)
|
||||||
|
if not self.client.collections.exists(sane_collection_name):
|
||||||
|
return
|
||||||
|
|
||||||
|
collection = self.client.collections.get(sane_collection_name)
|
||||||
|
|
||||||
|
try:
|
||||||
|
if ids:
|
||||||
|
for item_id in ids:
|
||||||
|
collection.data.delete_by_id(uuid=item_id)
|
||||||
|
elif filter:
|
||||||
|
# Simple filter handling
|
||||||
|
weaviate_filter = None
|
||||||
|
for key, value in filter.items():
|
||||||
|
prop_filter = weaviate.classes.query.Filter.by_property(name=key).equal(value)
|
||||||
|
if weaviate_filter is None:
|
||||||
|
weaviate_filter = prop_filter
|
||||||
|
else:
|
||||||
|
weaviate_filter = weaviate.classes.query.Filter.all_of([weaviate_filter, prop_filter])
|
||||||
|
|
||||||
|
if weaviate_filter:
|
||||||
|
collection.data.delete_many(where=weaviate_filter)
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def reset(self) -> None:
|
||||||
|
try:
|
||||||
|
all_collections = self.client.collections.list_all()
|
||||||
|
for collection_name in all_collections.keys():
|
||||||
|
self.client.collections.delete(collection_name)
|
||||||
|
except Exception:
|
||||||
|
pass
|
@ -48,6 +48,10 @@ class Vector:
|
|||||||
from open_webui.retrieval.vector.dbs.chroma import ChromaClient
|
from open_webui.retrieval.vector.dbs.chroma import ChromaClient
|
||||||
|
|
||||||
return ChromaClient()
|
return ChromaClient()
|
||||||
|
case VectorType.WEAVIATE:
|
||||||
|
from open_webui.retrieval.vector.dbs.weaviate import WeaviateClient
|
||||||
|
|
||||||
|
return WeaviateClient()
|
||||||
case _:
|
case _:
|
||||||
raise ValueError(f"Unsupported vector type: {vector_type}")
|
raise ValueError(f"Unsupported vector type: {vector_type}")
|
||||||
|
|
||||||
|
@ -9,3 +9,4 @@ class VectorType(StrEnum):
|
|||||||
ELASTICSEARCH = "elasticsearch"
|
ELASTICSEARCH = "elasticsearch"
|
||||||
OPENSEARCH = "opensearch"
|
OPENSEARCH = "opensearch"
|
||||||
PGVECTOR = "pgvector"
|
PGVECTOR = "pgvector"
|
||||||
|
WEAVIATE = "weaviate"
|
||||||
|
@ -53,6 +53,7 @@ opensearch-py==2.8.0
|
|||||||
playwright==1.49.1 # Caution: version must match docker-compose.playwright.yaml
|
playwright==1.49.1 # Caution: version must match docker-compose.playwright.yaml
|
||||||
elasticsearch==9.0.1
|
elasticsearch==9.0.1
|
||||||
pinecone==6.0.2
|
pinecone==6.0.2
|
||||||
|
weaviate-client==4.15.1
|
||||||
|
|
||||||
transformers
|
transformers
|
||||||
sentence-transformers==4.1.0
|
sentence-transformers==4.1.0
|
||||||
|
Loading…
Reference in New Issue
Block a user