diff --git a/CHANGELOG.md b/CHANGELOG.md index 505ded309..e4c6301ef 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -5,6 +5,10 @@ All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). +## [0.1.122] - 2024-04-24 + +- **🌟 Enhanced RAG Pipeline**: Added hybrid searching with `BM25`, reranking using `CrossEncoder`, and relevance score thresholds. + ## [0.1.121] - 2024-04-24 ### Fixed diff --git a/Dockerfile b/Dockerfile index a8f664ada..c43cd8cb3 100644 --- a/Dockerfile +++ b/Dockerfile @@ -8,8 +8,9 @@ ARG USE_CUDA_VER=cu121 # any sentence transformer model; models to use can be found at https://huggingface.co/models?library=sentence-transformers # Leaderboard: https://huggingface.co/spaces/mteb/leaderboard # for better performance and multilangauge support use "intfloat/multilingual-e5-large" (~2.5GB) or "intfloat/multilingual-e5-base" (~1.5GB) -# IMPORTANT: If you change the default model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. +# IMPORTANT: If you change the embedding model (sentence-transformers/all-MiniLM-L6-v2) and vice versa, you aren't able to use RAG Chat with your previous documents loaded in the WebUI! You need to re-embed them. ARG USE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 +ARG USE_RERANKING_MODEL="" ######## WebUI frontend ######## FROM --platform=$BUILDPLATFORM node:21-alpine3.19 as build @@ -30,6 +31,7 @@ ARG USE_CUDA ARG USE_OLLAMA ARG USE_CUDA_VER ARG USE_EMBEDDING_MODEL +ARG USE_RERANKING_MODEL ## Basis ## ENV ENV=prod \ @@ -38,7 +40,8 @@ ENV ENV=prod \ USE_OLLAMA_DOCKER=${USE_OLLAMA} \ USE_CUDA_DOCKER=${USE_CUDA} \ USE_CUDA_DOCKER_VER=${USE_CUDA_VER} \ - USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} + USE_EMBEDDING_MODEL_DOCKER=${USE_EMBEDDING_MODEL} \ + USE_RERANKING_MODEL_DOCKER=${USE_RERANKING_MODEL} ## Basis URL Config ## ENV OLLAMA_BASE_URL="/ollama" \ @@ -62,8 +65,11 @@ ENV WHISPER_MODEL="base" \ ## RAG Embedding model settings ## ENV RAG_EMBEDDING_MODEL="$USE_EMBEDDING_MODEL_DOCKER" \ - RAG_EMBEDDING_MODEL_DIR="/app/backend/data/cache/embedding/models" \ + RAG_RERANKING_MODEL="$USE_RERANKING_MODEL_DOCKER" \ SENTENCE_TRANSFORMERS_HOME="/app/backend/data/cache/embedding/models" + +## Hugging Face download cache ## +ENV HF_HOME="/app/backend/data/cache/embedding/models" #### Other models ########################################################## WORKDIR /app/backend diff --git a/backend/apps/rag/main.py b/backend/apps/rag/main.py index 5da7489f1..2db2cf1ff 100644 --- a/backend/apps/rag/main.py +++ b/backend/apps/rag/main.py @@ -39,8 +39,6 @@ import json import sentence_transformers -from apps.ollama.main import generate_ollama_embeddings, GenerateEmbeddingsForm - from apps.web.models.documents import ( Documents, DocumentForm, @@ -48,9 +46,10 @@ from apps.web.models.documents import ( ) from apps.rag.utils import ( + get_model_path, query_embeddings_doc, + query_embeddings_function, query_embeddings_collection, - generate_openai_embeddings, ) from utils.misc import ( @@ -60,13 +59,20 @@ from utils.misc import ( extract_folders_after_data_docs, ) from utils.utils import get_current_user, get_admin_user + from config import ( SRC_LOG_LEVELS, UPLOAD_DIR, DOCS_DIR, + RAG_TOP_K, + RAG_RELEVANCE_THRESHOLD, RAG_EMBEDDING_ENGINE, RAG_EMBEDDING_MODEL, + RAG_EMBEDDING_MODEL_AUTO_UPDATE, RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, + RAG_RERANKING_MODEL, + RAG_RERANKING_MODEL_AUTO_UPDATE, + RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, RAG_OPENAI_API_BASE_URL, RAG_OPENAI_API_KEY, DEVICE_TYPE, @@ -83,14 +89,14 @@ log.setLevel(SRC_LOG_LEVELS["RAG"]) app = FastAPI() - -app.state.TOP_K = 4 +app.state.TOP_K = RAG_TOP_K +app.state.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD app.state.CHUNK_SIZE = CHUNK_SIZE app.state.CHUNK_OVERLAP = CHUNK_OVERLAP - app.state.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE app.state.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL +app.state.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL app.state.RAG_TEMPLATE = RAG_TEMPLATE app.state.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL @@ -98,16 +104,48 @@ app.state.OPENAI_API_KEY = RAG_OPENAI_API_KEY app.state.PDF_EXTRACT_IMAGES = False -if app.state.RAG_EMBEDDING_ENGINE == "": - app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( - app.state.RAG_EMBEDDING_MODEL, - device=DEVICE_TYPE, - trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, - ) +def update_embedding_model( + embedding_model: str, + update_model: bool = False, +): + if embedding_model and app.state.RAG_EMBEDDING_ENGINE == "": + app.state.sentence_transformer_ef = sentence_transformers.SentenceTransformer( + get_model_path(embedding_model, update_model), + device=DEVICE_TYPE, + trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, + ) + else: + app.state.sentence_transformer_ef = None + + +def update_reranking_model( + reranking_model: str, + update_model: bool = False, +): + if reranking_model: + app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( + get_model_path(reranking_model, update_model), + device=DEVICE_TYPE, + trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, + ) + else: + app.state.sentence_transformer_rf = None + + +update_embedding_model( + app.state.RAG_EMBEDDING_MODEL, + RAG_EMBEDDING_MODEL_AUTO_UPDATE, +) + +update_reranking_model( + app.state.RAG_RERANKING_MODEL, + RAG_RERANKING_MODEL_AUTO_UPDATE, +) origins = ["*"] + app.add_middleware( CORSMiddleware, allow_origins=origins, @@ -134,6 +172,7 @@ async def get_status(): "template": app.state.RAG_TEMPLATE, "embedding_engine": app.state.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.RAG_EMBEDDING_MODEL, + "reranking_model": app.state.RAG_RERANKING_MODEL, } @@ -150,6 +189,11 @@ async def get_embedding_config(user=Depends(get_admin_user)): } +@app.get("/reranking") +async def get_reraanking_config(user=Depends(get_admin_user)): + return {"status": True, "reranking_model": app.state.RAG_RERANKING_MODEL} + + class OpenAIConfigForm(BaseModel): url: str key: str @@ -170,22 +214,14 @@ async def update_embedding_config( ) try: app.state.RAG_EMBEDDING_ENGINE = form_data.embedding_engine + app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model if app.state.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: - app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model - app.state.sentence_transformer_ef = None - if form_data.openai_config != None: app.state.OPENAI_API_BASE_URL = form_data.openai_config.url app.state.OPENAI_API_KEY = form_data.openai_config.key - else: - sentence_transformer_ef = sentence_transformers.SentenceTransformer( - app.state.RAG_EMBEDDING_MODEL, - device=DEVICE_TYPE, - trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, - ) - app.state.RAG_EMBEDDING_MODEL = form_data.embedding_model - app.state.sentence_transformer_ef = sentence_transformer_ef + + update_embedding_model(app.state.RAG_EMBEDDING_MODEL, True) return { "status": True, @@ -196,7 +232,6 @@ async def update_embedding_config( "key": app.state.OPENAI_API_KEY, }, } - except Exception as e: log.exception(f"Problem updating embedding model: {e}") raise HTTPException( @@ -205,6 +240,34 @@ async def update_embedding_config( ) +class RerankingModelUpdateForm(BaseModel): + reranking_model: str + + +@app.post("/reranking/update") +async def update_reranking_config( + form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) +): + log.info( + f"Updating reranking model: {app.state.RAG_RERANKING_MODEL} to {form_data.reranking_model}" + ) + try: + app.state.RAG_RERANKING_MODEL = form_data.reranking_model + + update_reranking_model(app.state.RAG_RERANKING_MODEL, True) + + return { + "status": True, + "reranking_model": app.state.RAG_RERANKING_MODEL, + } + except Exception as e: + log.exception(f"Problem updating reranking model: {e}") + raise HTTPException( + status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, + detail=ERROR_MESSAGES.DEFAULT(e), + ) + + @app.get("/config") async def get_rag_config(user=Depends(get_admin_user)): return { @@ -257,11 +320,13 @@ async def get_query_settings(user=Depends(get_admin_user)): "status": True, "template": app.state.RAG_TEMPLATE, "k": app.state.TOP_K, + "r": app.state.RELEVANCE_THRESHOLD, } class QuerySettingsForm(BaseModel): k: Optional[int] = None + r: Optional[float] = None template: Optional[str] = None @@ -271,6 +336,7 @@ async def update_query_settings( ): app.state.RAG_TEMPLATE = form_data.template if form_data.template else RAG_TEMPLATE app.state.TOP_K = form_data.k if form_data.k else 4 + app.state.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 return {"status": True, "template": app.state.RAG_TEMPLATE} @@ -278,6 +344,7 @@ class QueryDocForm(BaseModel): collection_name: str query: str k: Optional[int] = None + r: Optional[float] = None @app.post("/query/doc") @@ -286,34 +353,22 @@ def query_doc_handler( user=Depends(get_current_user), ): try: - if app.state.RAG_EMBEDDING_ENGINE == "": - query_embeddings = app.state.sentence_transformer_ef.encode( - form_data.query - ).tolist() - elif app.state.RAG_EMBEDDING_ENGINE == "ollama": - query_embeddings = generate_ollama_embeddings( - GenerateEmbeddingsForm( - **{ - "model": app.state.RAG_EMBEDDING_MODEL, - "prompt": form_data.query, - } - ) - ) - elif app.state.RAG_EMBEDDING_ENGINE == "openai": - query_embeddings = generate_openai_embeddings( - model=app.state.RAG_EMBEDDING_MODEL, - text=form_data.query, - key=app.state.OPENAI_API_KEY, - url=app.state.OPENAI_API_BASE_URL, - ) + embeddings_function = query_embeddings_function( + app.state.RAG_EMBEDDING_ENGINE, + app.state.RAG_EMBEDDING_MODEL, + app.state.sentence_transformer_ef, + app.state.OPENAI_API_KEY, + app.state.OPENAI_API_BASE_URL, + ) return query_embeddings_doc( collection_name=form_data.collection_name, query=form_data.query, - query_embeddings=query_embeddings, k=form_data.k if form_data.k else app.state.TOP_K, + r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD, + embeddings_function=embeddings_function, + reranking_function=app.state.sentence_transformer_rf, ) - except Exception as e: log.exception(e) raise HTTPException( @@ -326,6 +381,7 @@ class QueryCollectionsForm(BaseModel): collection_names: List[str] query: str k: Optional[int] = None + r: Optional[float] = None @app.post("/query/collection") @@ -334,33 +390,22 @@ def query_collection_handler( user=Depends(get_current_user), ): try: - if app.state.RAG_EMBEDDING_ENGINE == "": - query_embeddings = app.state.sentence_transformer_ef.encode( - form_data.query - ).tolist() - elif app.state.RAG_EMBEDDING_ENGINE == "ollama": - query_embeddings = generate_ollama_embeddings( - GenerateEmbeddingsForm( - **{ - "model": app.state.RAG_EMBEDDING_MODEL, - "prompt": form_data.query, - } - ) - ) - elif app.state.RAG_EMBEDDING_ENGINE == "openai": - query_embeddings = generate_openai_embeddings( - model=app.state.RAG_EMBEDDING_MODEL, - text=form_data.query, - key=app.state.OPENAI_API_KEY, - url=app.state.OPENAI_API_BASE_URL, - ) + embeddings_function = query_embeddings_function( + app.state.RAG_EMBEDDING_ENGINE, + app.state.RAG_EMBEDDING_MODEL, + app.state.sentence_transformer_ef, + app.state.OPENAI_API_KEY, + app.state.OPENAI_API_BASE_URL, + ) return query_embeddings_collection( collection_names=form_data.collection_names, - query_embeddings=query_embeddings, + query=form_data.query, k=form_data.k if form_data.k else app.state.TOP_K, + r=form_data.r if form_data.r else app.state.RELEVANCE_THRESHOLD, + embeddings_function=embeddings_function, + reranking_function=app.state.sentence_transformer_rf, ) - except Exception as e: log.exception(e) raise HTTPException( @@ -427,8 +472,6 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b log.info(f"store_docs_in_vector_db {docs} {collection_name}") texts = [doc.page_content for doc in docs] - texts = list(map(lambda x: x.replace("\n", " "), texts)) - metadatas = [doc.metadata for doc in docs] try: @@ -440,27 +483,16 @@ def store_docs_in_vector_db(docs, collection_name, overwrite: bool = False) -> b collection = CHROMA_CLIENT.create_collection(name=collection_name) - if app.state.RAG_EMBEDDING_ENGINE == "": - embeddings = app.state.sentence_transformer_ef.encode(texts).tolist() - elif app.state.RAG_EMBEDDING_ENGINE == "ollama": - embeddings = [ - generate_ollama_embeddings( - GenerateEmbeddingsForm( - **{"model": app.state.RAG_EMBEDDING_MODEL, "prompt": text} - ) - ) - for text in texts - ] - elif app.state.RAG_EMBEDDING_ENGINE == "openai": - embeddings = [ - generate_openai_embeddings( - model=app.state.RAG_EMBEDDING_MODEL, - text=text, - key=app.state.OPENAI_API_KEY, - url=app.state.OPENAI_API_BASE_URL, - ) - for text in texts - ] + embedding_func = query_embeddings_function( + app.state.RAG_EMBEDDING_ENGINE, + app.state.RAG_EMBEDDING_MODEL, + app.state.sentence_transformer_ef, + app.state.OPENAI_API_KEY, + app.state.OPENAI_API_BASE_URL, + ) + + embedding_texts = list(map(lambda x: x.replace("\n", " "), texts)) + embeddings = embedding_func(embedding_texts) for batch in create_batches( api=CHROMA_CLIENT, diff --git a/backend/apps/rag/utils.py b/backend/apps/rag/utils.py index 0ce299279..b5351217b 100644 --- a/backend/apps/rag/utils.py +++ b/backend/apps/rag/utils.py @@ -1,3 +1,4 @@ +import os import logging import requests @@ -8,6 +9,15 @@ from apps.ollama.main import ( GenerateEmbeddingsForm, ) +from huggingface_hub import snapshot_download + +from langchain_core.documents import Document +from langchain_community.retrievers import BM25Retriever +from langchain.retrievers import ( + ContextualCompressionRetriever, + EnsembleRetriever, +) + from config import SRC_LOG_LEVELS, CHROMA_CLIENT @@ -15,18 +25,53 @@ log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["RAG"]) -def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: int): +def query_embeddings_doc( + collection_name: str, + query: str, + k: int, + r: float, + embeddings_function, + reranking_function, +): try: # if you use docker use the model from the environment variable - log.info(f"query_embeddings_doc {query_embeddings}") collection = CHROMA_CLIENT.get_collection(name=collection_name) - result = collection.query( - query_embeddings=[query_embeddings], - n_results=k, + documents = collection.get() # get all documents + bm25_retriever = BM25Retriever.from_texts( + texts=documents.get("documents"), + metadatas=documents.get("metadatas"), + ) + bm25_retriever.k = k + + chroma_retriever = ChromaRetriever( + collection=collection, + embeddings_function=embeddings_function, + top_n=k, ) - log.info(f"query_embeddings_doc:result {result}") + ensemble_retriever = EnsembleRetriever( + retrievers=[bm25_retriever, chroma_retriever], weights=[0.5, 0.5] + ) + + compressor = RerankCompressor( + embeddings_function=embeddings_function, + reranking_function=reranking_function, + r_score=r, + top_n=k, + ) + + compression_retriever = ContextualCompressionRetriever( + base_compressor=compressor, base_retriever=ensemble_retriever + ) + + result = compression_retriever.invoke(query) + result = { + "distances": [[d.metadata.get("score") for d in result]], + "documents": [[d.page_content for d in result]], + "metadatas": [[d.metadata for d in result]], + } + return result except Exception as e: raise e @@ -34,63 +79,65 @@ def query_embeddings_doc(collection_name: str, query: str, query_embeddings, k: def merge_and_sort_query_results(query_results, k): # Initialize lists to store combined data - combined_ids = [] combined_distances = [] - combined_metadatas = [] combined_documents = [] + combined_metadatas = [] - # Combine data from each dictionary for data in query_results: - combined_ids.extend(data["ids"][0]) combined_distances.extend(data["distances"][0]) - combined_metadatas.extend(data["metadatas"][0]) combined_documents.extend(data["documents"][0]) + combined_metadatas.extend(data["metadatas"][0]) - # Create a list of tuples (distance, id, metadata, document) - combined = list( - zip(combined_distances, combined_ids, combined_metadatas, combined_documents) - ) + # Create a list of tuples (distance, document, metadata) + combined = list(zip(combined_distances, combined_documents, combined_metadatas)) # Sort the list based on distances combined.sort(key=lambda x: x[0]) - # Unzip the sorted list - sorted_distances, sorted_ids, sorted_metadatas, sorted_documents = zip(*combined) + # We don't have anything :-( + if not combined: + sorted_distances = [] + sorted_documents = [] + sorted_metadatas = [] + else: + # Unzip the sorted list + sorted_distances, sorted_documents, sorted_metadatas = zip(*combined) - # Slicing the lists to include only k elements - sorted_distances = list(sorted_distances)[:k] - sorted_ids = list(sorted_ids)[:k] - sorted_metadatas = list(sorted_metadatas)[:k] - sorted_documents = list(sorted_documents)[:k] + # Slicing the lists to include only k elements + sorted_distances = list(sorted_distances)[:k] + sorted_documents = list(sorted_documents)[:k] + sorted_metadatas = list(sorted_metadatas)[:k] # Create the output dictionary - merged_query_results = { - "ids": [sorted_ids], + result = { "distances": [sorted_distances], - "metadatas": [sorted_metadatas], "documents": [sorted_documents], - "embeddings": None, - "uris": None, - "data": None, + "metadatas": [sorted_metadatas], } - return merged_query_results + return result def query_embeddings_collection( - collection_names: List[str], query: str, query_embeddings, k: int + collection_names: List[str], + query: str, + k: int, + r: float, + embeddings_function, + reranking_function, ): results = [] - log.info(f"query_embeddings_collection {query_embeddings}") for collection_name in collection_names: try: result = query_embeddings_doc( collection_name=collection_name, query=query, - query_embeddings=query_embeddings, k=k, + r=r, + embeddings_function=embeddings_function, + reranking_function=reranking_function, ) results.append(result) except: @@ -105,19 +152,57 @@ def rag_template(template: str, context: str, query: str): return template -def rag_messages( - docs, - messages, - template, - k, +def query_embeddings_function( embedding_engine, embedding_model, embedding_function, openai_key, openai_url, +): + if embedding_engine == "": + return lambda query: embedding_function.encode(query).tolist() + elif embedding_engine in ["ollama", "openai"]: + if embedding_engine == "ollama": + func = lambda query: generate_ollama_embeddings( + GenerateEmbeddingsForm( + **{ + "model": embedding_model, + "prompt": query, + } + ) + ) + elif embedding_engine == "openai": + func = lambda query: generate_openai_embeddings( + model=embedding_model, + text=query, + key=openai_key, + url=openai_url, + ) + + def generate_multiple(query, f): + if isinstance(query, list): + return [f(q) for q in query] + else: + return f(query) + + return lambda query: generate_multiple(query, func) + + +def rag_messages( + docs, + messages, + template, + k, + r, + embedding_engine, + embedding_model, + embedding_function, + reranking_function, + openai_key, + openai_url, ): log.debug( - f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {openai_key} {openai_url}" + f"docs: {docs} {messages} {embedding_engine} {embedding_model} {embedding_function} {reranking_function} {openai_key} {openai_url}" ) last_user_message_idx = None @@ -145,62 +230,66 @@ def rag_messages( content_type = None query = "" + embeddings_function = query_embeddings_function( + embedding_engine, + embedding_model, + embedding_function, + openai_key, + openai_url, + ) + + extracted_collections = [] relevant_contexts = [] for doc in docs: context = None - try: + collection = doc.get("collection_name") + if collection: + collection = [collection] + else: + collection = doc.get("collection_names", []) + collection = set(collection).difference(extracted_collections) + if not collection: + log.debug(f"skipping {doc} as it has already been extracted") + continue + + try: if doc["type"] == "text": context = doc["content"] + elif doc["type"] == "collection": + context = query_embeddings_collection( + collection_names=doc["collection_names"], + query=query, + k=k, + r=r, + embeddings_function=embeddings_function, + reranking_function=reranking_function, + ) else: - if embedding_engine == "": - query_embeddings = embedding_function.encode(query).tolist() - elif embedding_engine == "ollama": - query_embeddings = generate_ollama_embeddings( - GenerateEmbeddingsForm( - **{ - "model": embedding_model, - "prompt": query, - } - ) - ) - elif embedding_engine == "openai": - query_embeddings = generate_openai_embeddings( - model=embedding_model, - text=query, - key=openai_key, - url=openai_url, - ) - - if doc["type"] == "collection": - context = query_embeddings_collection( - collection_names=doc["collection_names"], - query=query, - query_embeddings=query_embeddings, - k=k, - ) - else: - context = query_embeddings_doc( - collection_name=doc["collection_name"], - query=query, - query_embeddings=query_embeddings, - k=k, - ) - + context = query_embeddings_doc( + collection_name=doc["collection_name"], + query=query, + k=k, + r=r, + embeddings_function=embeddings_function, + reranking_function=reranking_function, + ) except Exception as e: log.exception(e) context = None - relevant_contexts.append(context) + if context: + relevant_contexts.append(context) - log.debug(f"relevant_contexts: {relevant_contexts}") + extracted_collections.extend(collection) context_string = "" for context in relevant_contexts: - if context: - context_string += " ".join(context["documents"][0]) + "\n" + items = context["documents"][0] + context_string += "\n\n".join(items) + context_string = context_string.strip() ra_content = rag_template( template=template, @@ -208,6 +297,8 @@ def rag_messages( query=query, ) + log.debug(f"ra_content: {ra_content}") + if content_type == "list": new_content = [] for content_item in user_message["content"]: @@ -229,6 +320,44 @@ def rag_messages( return messages +def get_model_path(model: str, update_model: bool = False): + # Construct huggingface_hub kwargs with local_files_only to return the snapshot path + cache_dir = os.getenv("SENTENCE_TRANSFORMERS_HOME") + + local_files_only = not update_model + + snapshot_kwargs = { + "cache_dir": cache_dir, + "local_files_only": local_files_only, + } + + log.debug(f"model: {model}") + log.debug(f"snapshot_kwargs: {snapshot_kwargs}") + + # Inspiration from upstream sentence_transformers + if ( + os.path.exists(model) + or ("\\" in model or model.count("/") > 1) + and local_files_only + ): + # If fully qualified path exists, return input, else set repo_id + return model + elif "/" not in model: + # Set valid repo_id for model short-name + model = "sentence-transformers" + "/" + model + + snapshot_kwargs["repo_id"] = model + + # Attempt to query the huggingface_hub library to determine the local path and/or to update + try: + model_repo_path = snapshot_download(**snapshot_kwargs) + log.debug(f"model_repo_path: {model_repo_path}") + return model_repo_path + except Exception as e: + log.exception(f"Cannot determine model snapshot path: {e}") + return model + + def generate_openai_embeddings( model: str, text: str, key: str, url: str = "https://api.openai.com/v1" ): @@ -250,3 +379,97 @@ def generate_openai_embeddings( except Exception as e: print(e) return None + + +from typing import Any + +from langchain_core.retrievers import BaseRetriever +from langchain_core.callbacks import CallbackManagerForRetrieverRun + + +class ChromaRetriever(BaseRetriever): + collection: Any + embeddings_function: Any + top_n: int + + def _get_relevant_documents( + self, + query: str, + *, + run_manager: CallbackManagerForRetrieverRun, + ) -> List[Document]: + query_embeddings = self.embeddings_function(query) + + results = self.collection.query( + query_embeddings=[query_embeddings], + n_results=self.top_n, + ) + + ids = results["ids"][0] + metadatas = results["metadatas"][0] + documents = results["documents"][0] + + return [ + Document( + metadata=metadatas[idx], + page_content=documents[idx], + ) + for idx in range(len(ids)) + ] + + +import operator + +from typing import Optional, Sequence + +from langchain_core.documents import BaseDocumentCompressor, Document +from langchain_core.callbacks import Callbacks +from langchain_core.pydantic_v1 import Extra + +from sentence_transformers import util + + +class RerankCompressor(BaseDocumentCompressor): + embeddings_function: Any + reranking_function: Any + r_score: float + top_n: int + + class Config: + extra = Extra.forbid + arbitrary_types_allowed = True + + def compress_documents( + self, + documents: Sequence[Document], + query: str, + callbacks: Optional[Callbacks] = None, + ) -> Sequence[Document]: + if self.reranking_function: + scores = self.reranking_function.predict( + [(query, doc.page_content) for doc in documents] + ) + else: + query_embedding = self.embeddings_function(query) + document_embedding = self.embeddings_function( + [doc.page_content for doc in documents] + ) + scores = util.cos_sim(query_embedding, document_embedding)[0] + + docs_with_scores = list(zip(documents, scores.tolist())) + if self.r_score: + docs_with_scores = [ + (d, s) for d, s in docs_with_scores if s >= self.r_score + ] + + result = sorted(docs_with_scores, key=operator.itemgetter(1), reverse=True) + final_results = [] + for doc, doc_score in result[: self.top_n]: + metadata = doc.metadata + metadata["score"] = doc_score + doc = Document( + page_content=doc.page_content, + metadata=metadata, + ) + final_results.append(doc) + return final_results diff --git a/backend/config.py b/backend/config.py index f421c8aea..622b95059 100644 --- a/backend/config.py +++ b/backend/config.py @@ -420,6 +420,9 @@ if WEBUI_AUTH and WEBUI_SECRET_KEY == "": CHROMA_DATA_PATH = f"{DATA_DIR}/vector_db" # this uses the model defined in the Dockerfile ENV variable. If you dont use docker or docker based deployments such as k8s, the default embedding model will be used (sentence-transformers/all-MiniLM-L6-v2) +RAG_TOP_K = int(os.environ.get("RAG_TOP_K", "5")) +RAG_RELEVANCE_THRESHOLD = float(os.environ.get("RAG_RELEVANCE_THRESHOLD", "0.0")) + RAG_EMBEDDING_ENGINE = os.environ.get("RAG_EMBEDDING_ENGINE", "") RAG_EMBEDDING_MODEL = os.environ.get( @@ -427,10 +430,26 @@ RAG_EMBEDDING_MODEL = os.environ.get( ) log.info(f"Embedding model set: {RAG_EMBEDDING_MODEL}"), +RAG_EMBEDDING_MODEL_AUTO_UPDATE = ( + os.environ.get("RAG_EMBEDDING_MODEL_AUTO_UPDATE", "").lower() == "true" +) + RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE = ( os.environ.get("RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" ) +RAG_RERANKING_MODEL = os.environ.get("RAG_RERANKING_MODEL", "") +if not RAG_RERANKING_MODEL == "": + log.info(f"Reranking model set: {RAG_RERANKING_MODEL}"), + +RAG_RERANKING_MODEL_AUTO_UPDATE = ( + os.environ.get("RAG_RERANKING_MODEL_AUTO_UPDATE", "").lower() == "true" +) + +RAG_RERANKING_MODEL_TRUST_REMOTE_CODE = ( + os.environ.get("RAG_RERANKING_MODEL_TRUST_REMOTE_CODE", "").lower() == "true" +) + # device type embedding models - "cpu" (default), "cuda" (nvidia gpu required) or "mps" (apple silicon) - choosing this right can lead to better performance USE_CUDA = os.environ.get("USE_CUDA_DOCKER", "false") @@ -439,16 +458,15 @@ if USE_CUDA.lower() == "true": else: DEVICE_TYPE = "cpu" - CHROMA_CLIENT = chromadb.PersistentClient( path=CHROMA_DATA_PATH, settings=Settings(allow_reset=True, anonymized_telemetry=False), ) -CHUNK_SIZE = 1500 -CHUNK_OVERLAP = 100 +CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1500")) +CHUNK_OVERLAP = int(os.environ.get("CHUNK_OVERLAP", "100")) -RAG_TEMPLATE = """Use the following context as your learned knowledge, inside XML tags. +DEFAULT_RAG_TEMPLATE = """Use the following context as your learned knowledge, inside XML tags. [context] @@ -462,6 +480,8 @@ And answer according to the language of the user's question. Given the context information, answer the query. Query: [query]""" +RAG_TEMPLATE = os.environ.get("RAG_TEMPLATE", DEFAULT_RAG_TEMPLATE) + RAG_OPENAI_API_BASE_URL = os.getenv("RAG_OPENAI_API_BASE_URL", OPENAI_API_BASE_URL) RAG_OPENAI_API_KEY = os.getenv("RAG_OPENAI_API_KEY", OPENAI_API_KEY) diff --git a/backend/main.py b/backend/main.py index c7c78e18d..1b92ae733 100644 --- a/backend/main.py +++ b/backend/main.py @@ -120,9 +120,11 @@ class RAGMiddleware(BaseHTTPMiddleware): data["messages"], rag_app.state.RAG_TEMPLATE, rag_app.state.TOP_K, + rag_app.state.RELEVANCE_THRESHOLD, rag_app.state.RAG_EMBEDDING_ENGINE, rag_app.state.RAG_EMBEDDING_MODEL, rag_app.state.sentence_transformer_ef, + rag_app.state.sentence_transformer_rf, rag_app.state.OPENAI_API_KEY, rag_app.state.OPENAI_API_BASE_URL, ) diff --git a/src/lib/apis/rag/index.ts b/src/lib/apis/rag/index.ts index 8a63b69ca..5dfa3d3aa 100644 --- a/src/lib/apis/rag/index.ts +++ b/src/lib/apis/rag/index.ts @@ -123,6 +123,7 @@ export const getQuerySettings = async (token: string) => { type QuerySettings = { k: number | null; + r: number | null; template: string | null; }; @@ -413,3 +414,64 @@ export const updateEmbeddingConfig = async (token: string, payload: EmbeddingMod return res; }; + +export const getRerankingConfig = async (token: string) => { + let error = null; + + const res = await fetch(`${RAG_API_BASE_URL}/reranking`, { + method: 'GET', + headers: { + 'Content-Type': 'application/json', + Authorization: `Bearer ${token}` + } + }) + .then(async (res) => { + if (!res.ok) throw await res.json(); + return res.json(); + }) + .catch((err) => { + console.log(err); + error = err.detail; + return null; + }); + + if (error) { + throw error; + } + + return res; +}; + +type RerankingModelUpdateForm = { + reranking_model: string; +}; + +export const updateRerankingConfig = async (token: string, payload: RerankingModelUpdateForm) => { + let error = null; + + const res = await fetch(`${RAG_API_BASE_URL}/reranking/update`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + Authorization: `Bearer ${token}` + }, + body: JSON.stringify({ + ...payload + }) + }) + .then(async (res) => { + if (!res.ok) throw await res.json(); + return res.json(); + }) + .catch((err) => { + console.log(err); + error = err.detail; + return null; + }); + + if (error) { + throw error; + } + + return res; +}; diff --git a/src/lib/components/documents/Settings/General.svelte b/src/lib/components/documents/Settings/General.svelte index 6abdda5af..c6695bb6b 100644 --- a/src/lib/components/documents/Settings/General.svelte +++ b/src/lib/components/documents/Settings/General.svelte @@ -8,7 +8,9 @@ updateQuerySettings, resetVectorDB, getEmbeddingConfig, - updateEmbeddingConfig + updateEmbeddingConfig, + getRerankingConfig, + updateRerankingConfig } from '$lib/apis/rag'; import { documents, models } from '$lib/stores'; @@ -23,11 +25,13 @@ let scanDirLoading = false; let updateEmbeddingModelLoading = false; + let updateRerankingModelLoading = false; let showResetConfirm = false; let embeddingEngine = ''; let embeddingModel = ''; + let rerankingModel = ''; let OpenAIKey = ''; let OpenAIUrl = ''; @@ -38,6 +42,7 @@ let querySettings = { template: '', + r: 0.0, k: 4 }; @@ -115,6 +120,29 @@ } }; + const rerankingModelUpdateHandler = async () => { + console.log('Update reranking model attempt:', rerankingModel); + + updateRerankingModelLoading = true; + const res = await updateRerankingConfig(localStorage.token, { + reranking_model: rerankingModel + }).catch(async (error) => { + toast.error(error); + await setRerankingConfig(); + return null; + }); + updateRerankingModelLoading = false; + + if (res) { + console.log('rerankingModelUpdateHandler:', res); + if (res.status === true) { + toast.success($i18n.t('Reranking model set to "{{reranking_model}}"', res), { + duration: 1000 * 10 + }); + } + } + }; + const submitHandler = async () => { const res = await updateRAGConfig(localStorage.token, { pdf_extract_images: pdfExtractImages, @@ -138,6 +166,14 @@ } }; + const setRerankingConfig = async () => { + const rerankingConfig = await getRerankingConfig(localStorage.token); + + if (rerankingConfig) { + rerankingModel = rerankingConfig.reranking_model; + } + }; + onMount(async () => { const res = await getRAGConfig(localStorage.token); @@ -149,6 +185,7 @@ } await setEmbeddingConfig(); + await setRerankingConfig(); querySettings = await getQuerySettings(localStorage.token); }); @@ -349,6 +386,79 @@
+
+
{$i18n.t('Update Reranking Model')}
+ +
+
+ +
+ +
+
+ +
+ {$i18n.t( + 'Note: If you choose a reranking model, it will use that to score and rerank instead of the embedding model.' + )} +
+ +
+
{$i18n.t('Scan for documents from {{path}}', { path: '/data/docs' })} @@ -473,6 +583,26 @@
+
+
+
+ {$i18n.t('Relevance Threshold')} +
+ +
+ +
+
+
+
{$i18n.t('RAG Template')}