Update pinecone.py

May 2025 Latest Pinecone Best Practices
This commit is contained in:
PVBLIC Foundation 2025-05-30 09:33:57 -07:00 committed by GitHub
parent 235489cfc5
commit 4ecf2a8685
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -3,10 +3,18 @@ import logging
import time # for measuring elapsed time
from pinecone import Pinecone, ServerlessSpec
# Add gRPC support for better performance (Pinecone best practice)
try:
from pinecone.grpc import PineconeGRPC
GRPC_AVAILABLE = True
except ImportError:
GRPC_AVAILABLE = False
import asyncio # for async upserts
import functools # for partial binding in async tasks
import concurrent.futures # for parallel batch upserts
import random # for jitter in retry backoff
from open_webui.retrieval.vector.main import (
VectorDBBase,
@ -47,7 +55,24 @@ class PineconeClient(VectorDBBase):
self.cloud = PINECONE_CLOUD
# Initialize Pinecone client for improved performance
self.client = Pinecone(api_key=self.api_key)
if GRPC_AVAILABLE:
# Use gRPC client for better performance (Pinecone recommendation)
self.client = PineconeGRPC(
api_key=self.api_key,
pool_threads=20, # Improved connection pool size
timeout=30 # Reasonable timeout for operations
)
self.using_grpc = True
log.info("Using Pinecone gRPC client for optimal performance")
else:
# Fallback to HTTP client with enhanced connection pooling
self.client = Pinecone(
api_key=self.api_key,
pool_threads=20, # Improved connection pool size
timeout=30 # Reasonable timeout for operations
)
self.using_grpc = False
log.info("Using Pinecone HTTP client (gRPC not available)")
# Persistent executor for batch operations
self._executor = concurrent.futures.ThreadPoolExecutor(max_workers=5)
@ -91,12 +116,37 @@ class PineconeClient(VectorDBBase):
log.info(f"Using existing Pinecone index '{self.index_name}'")
# Connect to the index
self.index = self.client.Index(self.index_name)
self.index = self.client.Index(
self.index_name,
pool_threads=20, # Enhanced connection pool for index operations
)
except Exception as e:
log.error(f"Failed to initialize Pinecone index: {e}")
raise RuntimeError(f"Failed to initialize Pinecone index: {e}")
def _retry_pinecone_operation(self, operation_func, max_retries=3):
"""Retry Pinecone operations with exponential backoff for rate limits and network issues."""
for attempt in range(max_retries):
try:
return operation_func()
except Exception as e:
error_str = str(e).lower()
# Check if it's a retryable error (rate limits, network issues, timeouts)
is_retryable = any(keyword in error_str for keyword in [
'rate limit', 'quota', 'timeout', 'network', 'connection',
'unavailable', 'internal error', '429', '500', '502', '503', '504'
])
if not is_retryable or attempt == max_retries - 1:
# Don't retry for non-retryable errors or on final attempt
raise
# Exponential backoff with jitter
delay = (2 ** attempt) + random.uniform(0, 1)
log.warning(f"Pinecone operation failed (attempt {attempt + 1}/{max_retries}), retrying in {delay:.2f}s: {e}")
time.sleep(delay)
def _create_points(
self, items: List[VectorItem], collection_name_with_prefix: str
) -> List[Dict[str, Any]]: