mirror of
https://github.com/open-webui/open-webui
synced 2025-06-16 19:31:52 +00:00
feat: Implement Qdrant multi-tenancy support with collection management and tenant isolation
This commit is contained in:
parent
0a8cecfbfa
commit
184d8dfd7e
@ -1751,6 +1751,7 @@ QDRANT_API_KEY = os.environ.get("QDRANT_API_KEY", None)
|
||||
QDRANT_ON_DISK = os.environ.get("QDRANT_ON_DISK", "false").lower() == "true"
|
||||
QDRANT_PREFER_GRPC = os.environ.get("QDRANT_PREFER_GRPC", "False").lower() == "true"
|
||||
QDRANT_GRPC_PORT = int(os.environ.get("QDRANT_GRPC_PORT", "6334"))
|
||||
QDRANT_MULTI_TENANCY = os.environ.get("QDRANT_MULTI_TENANCY", "false").lower() == "true"
|
||||
|
||||
# OpenSearch
|
||||
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
|
||||
|
712
backend/open_webui/retrieval/vector/dbs/qdrant_multitenancy.py
Normal file
712
backend/open_webui/retrieval/vector/dbs/qdrant_multitenancy.py
Normal file
@ -0,0 +1,712 @@
|
||||
import logging
|
||||
from typing import Optional, Tuple
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import grpc
|
||||
from open_webui.config import (
|
||||
QDRANT_API_KEY,
|
||||
QDRANT_GRPC_PORT,
|
||||
QDRANT_ON_DISK,
|
||||
QDRANT_PREFER_GRPC,
|
||||
QDRANT_URI,
|
||||
)
|
||||
from open_webui.env import SRC_LOG_LEVELS
|
||||
from open_webui.retrieval.vector.main import (
|
||||
GetResult,
|
||||
SearchResult,
|
||||
VectorDBBase,
|
||||
VectorItem,
|
||||
)
|
||||
from qdrant_client import QdrantClient as Qclient
|
||||
from qdrant_client.http.exceptions import UnexpectedResponse
|
||||
from qdrant_client.http.models import PointStruct
|
||||
from qdrant_client.models import models
|
||||
|
||||
NO_LIMIT = 999999999
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
||||
|
||||
|
||||
class QdrantClient(VectorDBBase):
|
||||
def __init__(self):
|
||||
self.collection_prefix = "open-webui"
|
||||
self.QDRANT_URI = QDRANT_URI
|
||||
self.QDRANT_API_KEY = QDRANT_API_KEY
|
||||
self.QDRANT_ON_DISK = QDRANT_ON_DISK
|
||||
self.PREFER_GRPC = QDRANT_PREFER_GRPC
|
||||
self.GRPC_PORT = QDRANT_GRPC_PORT
|
||||
|
||||
if not self.QDRANT_URI:
|
||||
self.client = None
|
||||
return
|
||||
|
||||
# Unified handling for either scheme
|
||||
parsed = urlparse(self.QDRANT_URI)
|
||||
host = parsed.hostname or self.QDRANT_URI
|
||||
http_port = parsed.port or 6333 # default REST port
|
||||
|
||||
if self.PREFER_GRPC:
|
||||
self.client = Qclient(
|
||||
host=host,
|
||||
port=http_port,
|
||||
grpc_port=self.GRPC_PORT,
|
||||
prefer_grpc=self.PREFER_GRPC,
|
||||
api_key=self.QDRANT_API_KEY,
|
||||
)
|
||||
else:
|
||||
self.client = Qclient(url=self.QDRANT_URI, api_key=self.QDRANT_API_KEY)
|
||||
|
||||
# Main collection types for multi-tenancy
|
||||
self.MEMORY_COLLECTION = f"{self.collection_prefix}_memories"
|
||||
self.KNOWLEDGE_COLLECTION = f"{self.collection_prefix}_knowledge"
|
||||
self.FILE_COLLECTION = f"{self.collection_prefix}_files"
|
||||
self.WEB_SEARCH_COLLECTION = f"{self.collection_prefix}_web-search"
|
||||
self.HASH_BASED_COLLECTION = f"{self.collection_prefix}_hash-based"
|
||||
|
||||
def _result_to_get_result(self, points) -> GetResult:
|
||||
ids = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
for point in points:
|
||||
payload = point.payload
|
||||
ids.append(point.id)
|
||||
documents.append(payload["text"])
|
||||
metadatas.append(payload["metadata"])
|
||||
|
||||
return GetResult(
|
||||
**{
|
||||
"ids": [ids],
|
||||
"documents": [documents],
|
||||
"metadatas": [metadatas],
|
||||
}
|
||||
)
|
||||
|
||||
def _get_collection_and_tenant_id(self, collection_name: str) -> Tuple[str, str]:
|
||||
"""
|
||||
Maps the traditional collection name to multi-tenant collection and tenant ID.
|
||||
|
||||
Returns:
|
||||
tuple: (collection_name, tenant_id)
|
||||
"""
|
||||
# Check for user memory collections
|
||||
tenant_id = collection_name
|
||||
|
||||
if collection_name.startswith("user-memory-"):
|
||||
return self.MEMORY_COLLECTION, tenant_id
|
||||
|
||||
# Check for file collections
|
||||
elif collection_name.startswith("file-"):
|
||||
return self.FILE_COLLECTION, tenant_id
|
||||
|
||||
# Check for web search collections
|
||||
elif collection_name.startswith("web-search-"):
|
||||
return self.WEB_SEARCH_COLLECTION, tenant_id
|
||||
|
||||
# Handle hash-based collections (YouTube and web URLs)
|
||||
elif len(collection_name) == 63 and all(
|
||||
c in "0123456789abcdef" for c in collection_name
|
||||
):
|
||||
return self.HASH_BASED_COLLECTION, tenant_id
|
||||
|
||||
else:
|
||||
return self.KNOWLEDGE_COLLECTION, tenant_id
|
||||
|
||||
def _extract_error_message(self, exception):
|
||||
"""
|
||||
Extract error message from either HTTP or gRPC exceptions
|
||||
|
||||
Returns:
|
||||
tuple: (status_code, error_message)
|
||||
"""
|
||||
# Check if it's an HTTP exception
|
||||
if isinstance(exception, UnexpectedResponse):
|
||||
try:
|
||||
error_data = exception.structured()
|
||||
error_msg = error_data.get("status", {}).get("error", "")
|
||||
return exception.status_code, error_msg
|
||||
except Exception as inner_e:
|
||||
log.error(f"Failed to parse HTTP error: {inner_e}")
|
||||
return exception.status_code, str(exception)
|
||||
|
||||
# Check if it's a gRPC exception
|
||||
elif isinstance(exception, grpc.RpcError):
|
||||
# Extract status code from gRPC error
|
||||
status_code = None
|
||||
if hasattr(exception, "code") and callable(exception.code):
|
||||
status_code = exception.code().value[0]
|
||||
|
||||
# Extract error message
|
||||
error_msg = str(exception)
|
||||
if "details =" in error_msg:
|
||||
# Parse the details line which contains the actual error message
|
||||
try:
|
||||
details_line = [
|
||||
line.strip()
|
||||
for line in error_msg.split("\n")
|
||||
if "details =" in line
|
||||
][0]
|
||||
error_msg = details_line.split("details =")[1].strip(' "')
|
||||
except (IndexError, AttributeError):
|
||||
# Fall back to full message if parsing fails
|
||||
pass
|
||||
|
||||
return status_code, error_msg
|
||||
|
||||
# For any other type of exception
|
||||
return None, str(exception)
|
||||
|
||||
def _is_collection_not_found_error(self, exception):
|
||||
"""
|
||||
Check if the exception is due to collection not found, supporting both HTTP and gRPC
|
||||
"""
|
||||
status_code, error_msg = self._extract_error_message(exception)
|
||||
|
||||
# HTTP error (404)
|
||||
if (
|
||||
status_code == 404
|
||||
and "Collection" in error_msg
|
||||
and "doesn't exist" in error_msg
|
||||
):
|
||||
return True
|
||||
|
||||
# gRPC error (NOT_FOUND status)
|
||||
if (
|
||||
isinstance(exception, grpc.RpcError)
|
||||
and exception.code() == grpc.StatusCode.NOT_FOUND
|
||||
):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def _is_dimension_mismatch_error(self, exception):
|
||||
"""
|
||||
Check if the exception is due to dimension mismatch, supporting both HTTP and gRPC
|
||||
"""
|
||||
status_code, error_msg = self._extract_error_message(exception)
|
||||
|
||||
# Common patterns in both HTTP and gRPC
|
||||
return (
|
||||
"Vector dimension error" in error_msg
|
||||
or "dimensions mismatch" in error_msg
|
||||
or "invalid vector size" in error_msg
|
||||
)
|
||||
|
||||
def _create_multi_tenant_collection_if_not_exists(
|
||||
self, mt_collection_name: str, dimension: int = 384
|
||||
):
|
||||
"""
|
||||
Creates a collection with multi-tenancy configuration if it doesn't exist.
|
||||
Default dimension is set to 384 which corresponds to 'sentence-transformers/all-MiniLM-L6-v2'.
|
||||
When creating collections dynamically (insert/upsert), the actual vector dimensions will be used.
|
||||
"""
|
||||
try:
|
||||
# Try to create the collection directly - will fail if it already exists
|
||||
self.client.create_collection(
|
||||
collection_name=mt_collection_name,
|
||||
vectors_config=models.VectorParams(
|
||||
size=dimension,
|
||||
distance=models.Distance.COSINE,
|
||||
on_disk=self.QDRANT_ON_DISK,
|
||||
),
|
||||
hnsw_config=models.HnswConfigDiff(
|
||||
payload_m=16, # Enable per-tenant indexing
|
||||
m=0,
|
||||
on_disk=self.QDRANT_ON_DISK,
|
||||
),
|
||||
)
|
||||
|
||||
# Create tenant ID payload index
|
||||
self.client.create_payload_index(
|
||||
collection_name=mt_collection_name,
|
||||
field_name="tenant_id",
|
||||
field_schema=models.KeywordIndexParams(
|
||||
type=models.KeywordIndexType.KEYWORD,
|
||||
is_tenant=True,
|
||||
on_disk=self.QDRANT_ON_DISK,
|
||||
),
|
||||
wait=True,
|
||||
)
|
||||
|
||||
log.info(
|
||||
f"Multi-tenant collection {mt_collection_name} created with dimension {dimension}!"
|
||||
)
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
# Check for the specific error indicating collection already exists
|
||||
status_code, error_msg = self._extract_error_message(e)
|
||||
|
||||
# HTTP status code 409 or gRPC ALREADY_EXISTS
|
||||
if (isinstance(e, UnexpectedResponse) and status_code == 409) or (
|
||||
isinstance(e, grpc.RpcError)
|
||||
and e.code() == grpc.StatusCode.ALREADY_EXISTS
|
||||
):
|
||||
if "already exists" in error_msg:
|
||||
log.debug(f"Collection {mt_collection_name} already exists")
|
||||
return
|
||||
# If it's not an already exists error, re-raise
|
||||
raise e
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
def _create_points(self, items: list[VectorItem], tenant_id: str):
|
||||
"""
|
||||
Create point structs from vector items with tenant ID.
|
||||
"""
|
||||
return [
|
||||
PointStruct(
|
||||
id=item["id"],
|
||||
vector=item["vector"],
|
||||
payload={
|
||||
"text": item["text"],
|
||||
"metadata": item["metadata"],
|
||||
"tenant_id": tenant_id,
|
||||
},
|
||||
)
|
||||
for item in items
|
||||
]
|
||||
|
||||
def has_collection(self, collection_name: str) -> bool:
|
||||
"""
|
||||
Check if a logical collection exists by checking for any points with the tenant ID.
|
||||
"""
|
||||
if not self.client:
|
||||
return False
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Create tenant filter
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
try:
|
||||
# Try directly querying - most of the time collection should exist
|
||||
response = self.client.query_points(
|
||||
collection_name=mt_collection,
|
||||
query_filter=models.Filter(must=[tenant_filter]),
|
||||
limit=1,
|
||||
)
|
||||
|
||||
# Collection exists with this tenant ID if there are points
|
||||
return len(response.points) > 0
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.debug(f"Collection {mt_collection} doesn't exist")
|
||||
return False
|
||||
else:
|
||||
# For other API errors, log and return False
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unexpected Qdrant error: {error_msg}")
|
||||
return False
|
||||
except Exception as e:
|
||||
# For any other errors, log and return False
|
||||
log.debug(f"Error checking collection {mt_collection}: {e}")
|
||||
return False
|
||||
|
||||
def delete(
|
||||
self,
|
||||
collection_name: str,
|
||||
ids: Optional[list[str]] = None,
|
||||
filter: Optional[dict] = None,
|
||||
):
|
||||
"""
|
||||
Delete vectors by ID or filter from a collection with tenant isolation.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Create tenant filter
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
must_conditions = [tenant_filter]
|
||||
should_conditions = []
|
||||
|
||||
if ids:
|
||||
for id_value in ids:
|
||||
should_conditions.append(
|
||||
models.FieldCondition(
|
||||
key="metadata.id",
|
||||
match=models.MatchValue(value=id_value),
|
||||
),
|
||||
)
|
||||
elif filter:
|
||||
for key, value in filter.items():
|
||||
must_conditions.append(
|
||||
models.FieldCondition(
|
||||
key=f"metadata.{key}",
|
||||
match=models.MatchValue(value=value),
|
||||
),
|
||||
)
|
||||
|
||||
try:
|
||||
# Try to delete directly - most of the time collection should exist
|
||||
update_result = self.client.delete(
|
||||
collection_name=mt_collection,
|
||||
points_selector=models.FilterSelector(
|
||||
filter=models.Filter(must=must_conditions, should=should_conditions)
|
||||
),
|
||||
)
|
||||
|
||||
return update_result
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.debug(
|
||||
f"Collection {mt_collection} doesn't exist, nothing to delete"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
# For other API errors, log and re-raise
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unexpected Qdrant error: {error_msg}")
|
||||
raise
|
||||
except Exception as e:
|
||||
# For non-Qdrant exceptions, re-raise
|
||||
raise
|
||||
|
||||
def search(
|
||||
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
||||
) -> Optional[SearchResult]:
|
||||
"""
|
||||
Search for the nearest neighbor items based on the vectors with tenant isolation.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Get the vector dimension from the query vector
|
||||
dimension = len(vectors[0]) if vectors and len(vectors) > 0 else None
|
||||
|
||||
try:
|
||||
# Try the search operation directly - most of the time collection should exist
|
||||
|
||||
# Create tenant filter
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
# Ensure vector dimensions match the collection
|
||||
collection_dim = self.client.get_collection(
|
||||
mt_collection
|
||||
).config.params.vectors.size
|
||||
|
||||
if collection_dim != dimension:
|
||||
if collection_dim < dimension:
|
||||
vectors = [vector[:collection_dim] for vector in vectors]
|
||||
else:
|
||||
vectors = [
|
||||
vector + [0] * (collection_dim - dimension)
|
||||
for vector in vectors
|
||||
]
|
||||
|
||||
# Search with tenant filter
|
||||
prefetch_query = models.Prefetch(
|
||||
filter=models.Filter(must=[tenant_filter]),
|
||||
limit=NO_LIMIT,
|
||||
)
|
||||
query_response = self.client.query_points(
|
||||
collection_name=mt_collection,
|
||||
query=vectors[0],
|
||||
prefetch=prefetch_query,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
get_result = self._result_to_get_result(query_response.points)
|
||||
return SearchResult(
|
||||
ids=get_result.ids,
|
||||
documents=get_result.documents,
|
||||
metadatas=get_result.metadatas,
|
||||
# qdrant distance is [-1, 1], normalize to [0, 1]
|
||||
distances=[
|
||||
[(point.score + 1.0) / 2.0 for point in query_response.points]
|
||||
],
|
||||
)
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.debug(
|
||||
f"Collection {mt_collection} doesn't exist, search returns None"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
# For other API errors, log and re-raise
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unexpected Qdrant error during search: {error_msg}")
|
||||
raise
|
||||
except Exception as e:
|
||||
# For non-Qdrant exceptions, log and return None
|
||||
log.exception(f"Error searching collection '{collection_name}': {e}")
|
||||
return None
|
||||
|
||||
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
|
||||
"""
|
||||
Query points with filters and tenant isolation.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Set default limit if not provided
|
||||
if limit is None:
|
||||
limit = NO_LIMIT
|
||||
|
||||
# Create tenant filter
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
# Create metadata filters
|
||||
field_conditions = []
|
||||
for key, value in filter.items():
|
||||
field_conditions.append(
|
||||
models.FieldCondition(
|
||||
key=f"metadata.{key}", match=models.MatchValue(value=value)
|
||||
)
|
||||
)
|
||||
|
||||
# Combine tenant filter with metadata filters
|
||||
combined_filter = models.Filter(must=[tenant_filter, *field_conditions])
|
||||
|
||||
try:
|
||||
# Try the query directly - most of the time collection should exist
|
||||
points = self.client.query_points(
|
||||
collection_name=mt_collection,
|
||||
query_filter=combined_filter,
|
||||
limit=limit,
|
||||
)
|
||||
|
||||
return self._result_to_get_result(points.points)
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.debug(
|
||||
f"Collection {mt_collection} doesn't exist, query returns None"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
# For other API errors, log and re-raise
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unexpected Qdrant error during query: {error_msg}")
|
||||
raise
|
||||
except Exception as e:
|
||||
# For non-Qdrant exceptions, log and re-raise
|
||||
log.exception(f"Error querying collection '{collection_name}': {e}")
|
||||
return None
|
||||
|
||||
def get(self, collection_name: str) -> Optional[GetResult]:
|
||||
"""
|
||||
Get all items in a collection with tenant isolation.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Create tenant filter
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
try:
|
||||
# Try to get points directly - most of the time collection should exist
|
||||
points = self.client.query_points(
|
||||
collection_name=mt_collection,
|
||||
query_filter=models.Filter(must=[tenant_filter]),
|
||||
limit=NO_LIMIT,
|
||||
)
|
||||
|
||||
return self._result_to_get_result(points.points)
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.debug(f"Collection {mt_collection} doesn't exist, get returns None")
|
||||
return None
|
||||
else:
|
||||
# For other API errors, log and re-raise
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unexpected Qdrant error during get: {error_msg}")
|
||||
raise
|
||||
except Exception as e:
|
||||
# For non-Qdrant exceptions, log and return None
|
||||
log.exception(f"Error getting collection '{collection_name}': {e}")
|
||||
return None
|
||||
|
||||
def _handle_operation_with_error_retry(
|
||||
self, operation_name, mt_collection, points, dimension
|
||||
):
|
||||
"""
|
||||
Private helper to handle common error cases for insert and upsert operations.
|
||||
|
||||
Args:
|
||||
operation_name: 'insert' or 'upsert'
|
||||
mt_collection: The multi-tenant collection name
|
||||
points: The vector points to insert/upsert
|
||||
dimension: The dimension of the vectors
|
||||
|
||||
Returns:
|
||||
The operation result (for upsert) or None (for insert)
|
||||
"""
|
||||
try:
|
||||
if operation_name == "insert":
|
||||
self.client.upload_points(mt_collection, points)
|
||||
return None
|
||||
else: # upsert
|
||||
return self.client.upsert(mt_collection, points)
|
||||
except (UnexpectedResponse, grpc.RpcError) as e:
|
||||
# Handle collection not found
|
||||
if self._is_collection_not_found_error(e):
|
||||
log.info(
|
||||
f"Collection {mt_collection} doesn't exist. Creating it with dimension {dimension}."
|
||||
)
|
||||
# Create collection with correct dimensions from our vectors
|
||||
self._create_multi_tenant_collection_if_not_exists(
|
||||
mt_collection_name=mt_collection, dimension=dimension
|
||||
)
|
||||
# Try operation again - no need for dimension adjustment since we just created with correct dimensions
|
||||
if operation_name == "insert":
|
||||
self.client.upload_points(mt_collection, points)
|
||||
return None
|
||||
else: # upsert
|
||||
return self.client.upsert(mt_collection, points)
|
||||
|
||||
# Handle dimension mismatch
|
||||
elif self._is_dimension_mismatch_error(e):
|
||||
# For dimension errors, the collection must exist, so get its configuration
|
||||
mt_collection_info = self.client.get_collection(mt_collection)
|
||||
existing_size = mt_collection_info.config.params.vectors.size
|
||||
|
||||
log.info(
|
||||
f"Dimension mismatch: Collection {mt_collection} expects {existing_size}, got {dimension}"
|
||||
)
|
||||
|
||||
if existing_size < dimension:
|
||||
# Truncate vectors to fit
|
||||
log.info(
|
||||
f"Truncating vectors from {dimension} to {existing_size} dimensions"
|
||||
)
|
||||
points = [
|
||||
PointStruct(
|
||||
id=point.id,
|
||||
vector=point.vector[:existing_size],
|
||||
payload=point.payload,
|
||||
)
|
||||
for point in points
|
||||
]
|
||||
elif existing_size > dimension:
|
||||
# Pad vectors with zeros
|
||||
log.info(
|
||||
f"Padding vectors from {dimension} to {existing_size} dimensions with zeros"
|
||||
)
|
||||
points = [
|
||||
PointStruct(
|
||||
id=point.id,
|
||||
vector=point.vector
|
||||
+ [0] * (existing_size - len(point.vector)),
|
||||
payload=point.payload,
|
||||
)
|
||||
for point in points
|
||||
]
|
||||
# Try operation again with adjusted dimensions
|
||||
if operation_name == "insert":
|
||||
self.client.upload_points(mt_collection, points)
|
||||
return None
|
||||
else: # upsert
|
||||
return self.client.upsert(mt_collection, points)
|
||||
else:
|
||||
# Not a known error we can handle, log and re-raise
|
||||
_, error_msg = self._extract_error_message(e)
|
||||
log.warning(f"Unhandled Qdrant error: {error_msg}")
|
||||
raise
|
||||
except Exception as e:
|
||||
# For non-Qdrant exceptions, re-raise
|
||||
raise
|
||||
|
||||
def insert(self, collection_name: str, items: list[VectorItem]):
|
||||
"""
|
||||
Insert items with tenant ID.
|
||||
"""
|
||||
if not self.client or not items:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Get dimensions from the actual vectors
|
||||
dimension = len(items[0]["vector"]) if items else None
|
||||
|
||||
# Create points with tenant ID
|
||||
points = self._create_points(items, tenant_id)
|
||||
|
||||
# Handle the operation with error retry
|
||||
return self._handle_operation_with_error_retry(
|
||||
"insert", mt_collection, points, dimension
|
||||
)
|
||||
|
||||
def upsert(self, collection_name: str, items: list[VectorItem]):
|
||||
"""
|
||||
Upsert items with tenant ID.
|
||||
"""
|
||||
if not self.client or not items:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
# Get dimensions from the actual vectors
|
||||
dimension = len(items[0]["vector"]) if items else None
|
||||
|
||||
# Create points with tenant ID
|
||||
points = self._create_points(items, tenant_id)
|
||||
|
||||
# Handle the operation with error retry
|
||||
return self._handle_operation_with_error_retry(
|
||||
"upsert", mt_collection, points, dimension
|
||||
)
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Reset the database by deleting all collections.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
collection_names = self.client.get_collections().collections
|
||||
for collection_name in collection_names:
|
||||
if collection_name.name.startswith(self.collection_prefix):
|
||||
self.client.delete_collection(collection_name=collection_name.name)
|
||||
|
||||
def delete_collection(self, collection_name: str):
|
||||
"""
|
||||
Delete a collection.
|
||||
"""
|
||||
if not self.client:
|
||||
return None
|
||||
|
||||
# Map to multi-tenant collection and tenant ID
|
||||
mt_collection, tenant_id = self._get_collection_and_tenant_id(collection_name)
|
||||
|
||||
tenant_filter = models.FieldCondition(
|
||||
key="tenant_id", match=models.MatchValue(value=tenant_id)
|
||||
)
|
||||
|
||||
field_conditions = [tenant_filter]
|
||||
|
||||
update_result = self.client.delete(
|
||||
collection_name=mt_collection,
|
||||
points_selector=models.FilterSelector(
|
||||
filter=models.Filter(must=field_conditions)
|
||||
),
|
||||
)
|
||||
|
||||
if self.client.get_collection(mt_collection).points_count == 0:
|
||||
self.client.delete_collection(mt_collection)
|
||||
|
||||
return update_result
|
@ -1,6 +1,6 @@
|
||||
from open_webui.retrieval.vector.main import VectorDBBase
|
||||
from open_webui.retrieval.vector.type import VectorType
|
||||
from open_webui.config import VECTOR_DB
|
||||
from open_webui.config import VECTOR_DB, QDRANT_MULTI_TENANCY
|
||||
|
||||
|
||||
class Vector:
|
||||
@ -16,9 +16,14 @@ class Vector:
|
||||
|
||||
return MilvusClient()
|
||||
case VectorType.QDRANT:
|
||||
from open_webui.retrieval.vector.dbs.qdrant import QdrantClient
|
||||
if QDRANT_MULTI_TENANCY:
|
||||
from open_webui.retrieval.vector.dbs.qdrant_multitenancy import QdrantClient
|
||||
|
||||
return QdrantClient()
|
||||
return QdrantClient()
|
||||
else:
|
||||
from open_webui.retrieval.vector.dbs.qdrant import QdrantClient
|
||||
|
||||
return QdrantClient()
|
||||
case VectorType.PINECONE:
|
||||
from open_webui.retrieval.vector.dbs.pinecone import PineconeClient
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user