mirror of
https://github.com/open-webui/open-webui
synced 2025-06-26 18:26:48 +00:00
Update pinecone.py
Now supports batched insert, upsert, and delete operations using a default batch size of 100, reducing API strain and improving throughput. All blocking calls to the Pinecone API are wrapped in asyncio.to_thread(...), ensuring async safety and preventing event loop blocking. The implementation includes zero-vector handling for efficient metadata-only queries, normalized cosine distance scores for accurate ranking, and protections against empty input operations. Logs for batch durations have been streamlined to minimize noise, while preserving key info-level success logs.
This commit is contained in:
parent
827326e1a2
commit
04b9065f08
@ -1,7 +1,49 @@
|
|||||||
from typing import Optional, List, Dict, Any, Union
|
from typing import Optional, List, Dict, Any, Union
|
||||||
import logging
|
import logging
|
||||||
|
import asyncio
|
||||||
from pinecone import Pinecone, ServerlessSpec
|
from pinecone import Pinecone, ServerlessSpec
|
||||||
|
|
||||||
|
# Helper for building consistent metadata
|
||||||
|
def build_metadata(
|
||||||
|
*,
|
||||||
|
source: str,
|
||||||
|
type_: str,
|
||||||
|
user_id: str,
|
||||||
|
chat_id: Optional[str] = None,
|
||||||
|
filename: Optional[str] = None,
|
||||||
|
text: Optional[str] = None,
|
||||||
|
topic: Optional[str] = None,
|
||||||
|
model: Optional[str] = None,
|
||||||
|
vector_dim: Optional[int] = None,
|
||||||
|
extra: Optional[Dict[str, Any]] = None,
|
||||||
|
collection_name: Optional[str] = None,
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
metadata = {
|
||||||
|
"source": source,
|
||||||
|
"type": type_,
|
||||||
|
"user_id": user_id,
|
||||||
|
"timestamp": datetime.utcnow().isoformat() + "Z",
|
||||||
|
}
|
||||||
|
if chat_id:
|
||||||
|
metadata["chat_id"] = chat_id
|
||||||
|
if filename:
|
||||||
|
metadata["filename"] = filename
|
||||||
|
if text:
|
||||||
|
metadata["text"] = text
|
||||||
|
if topic:
|
||||||
|
metadata["topic"] = topic
|
||||||
|
if model:
|
||||||
|
metadata["model"] = model
|
||||||
|
if vector_dim:
|
||||||
|
metadata["vector_dim"] = vector_dim
|
||||||
|
if collection_name:
|
||||||
|
metadata["collection_name"] = collection_name
|
||||||
|
if extra:
|
||||||
|
metadata.update(extra)
|
||||||
|
return metadata
|
||||||
|
|
||||||
from open_webui.retrieval.vector.main import (
|
from open_webui.retrieval.vector.main import (
|
||||||
VectorDBBase,
|
VectorDBBase,
|
||||||
VectorItem,
|
VectorItem,
|
||||||
@ -27,7 +69,8 @@ log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|||||||
|
|
||||||
class PineconeClient(VectorDBBase):
|
class PineconeClient(VectorDBBase):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.collection_prefix = "open-webui"
|
from open_webui.config import PINECONE_NAMESPACE
|
||||||
|
self.namespace = PINECONE_NAMESPACE
|
||||||
|
|
||||||
# Validate required configuration
|
# Validate required configuration
|
||||||
self._validate_config()
|
self._validate_config()
|
||||||
@ -94,15 +137,32 @@ class PineconeClient(VectorDBBase):
|
|||||||
"""Convert VectorItem objects to Pinecone point format."""
|
"""Convert VectorItem objects to Pinecone point format."""
|
||||||
points = []
|
points = []
|
||||||
for item in items:
|
for item in items:
|
||||||
# Start with any existing metadata or an empty dict
|
user_id = item.get("metadata", {}).get("created_by", "unknown")
|
||||||
metadata = item.get("metadata", {}).copy() if item.get("metadata") else {}
|
chat_id = item.get("metadata", {}).get("chat_id")
|
||||||
|
filename = item.get("metadata", {}).get("name")
|
||||||
|
text = item.get("text")
|
||||||
|
model = item.get("metadata", {}).get("model")
|
||||||
|
topic = item.get("metadata", {}).get("topic")
|
||||||
|
|
||||||
# Add text to metadata if available
|
# Infer source from filename or fallback
|
||||||
if "text" in item:
|
raw_source = item.get("metadata", {}).get("source", "")
|
||||||
metadata["text"] = item["text"]
|
inferred_source = "knowledge"
|
||||||
|
if raw_source == filename or (isinstance(raw_source, str) and raw_source.endswith((".pdf", ".txt", ".docx"))):
|
||||||
|
inferred_source = "chat" if item.get("metadata", {}).get("created_by") else "knowledge"
|
||||||
|
else:
|
||||||
|
inferred_source = raw_source or "knowledge"
|
||||||
|
|
||||||
# Always add collection_name to metadata for filtering
|
metadata = build_metadata(
|
||||||
metadata["collection_name"] = collection_name_with_prefix
|
source=inferred_source,
|
||||||
|
type_="upload",
|
||||||
|
user_id=user_id,
|
||||||
|
chat_id=chat_id,
|
||||||
|
filename=filename,
|
||||||
|
text=text,
|
||||||
|
model=model,
|
||||||
|
topic=topic,
|
||||||
|
collection_name=collection_name_with_prefix,
|
||||||
|
)
|
||||||
|
|
||||||
point = {
|
point = {
|
||||||
"id": item["id"],
|
"id": item["id"],
|
||||||
@ -112,9 +172,9 @@ class PineconeClient(VectorDBBase):
|
|||||||
points.append(point)
|
points.append(point)
|
||||||
return points
|
return points
|
||||||
|
|
||||||
def _get_collection_name_with_prefix(self, collection_name: str) -> str:
|
def _get_namespace(self) -> str:
|
||||||
"""Get the collection name with prefix."""
|
"""Get the namespace from the environment variable."""
|
||||||
return f"{self.collection_prefix}_{collection_name}"
|
return self.namespace
|
||||||
|
|
||||||
def _normalize_distance(self, score: float) -> float:
|
def _normalize_distance(self, score: float) -> float:
|
||||||
"""Normalize distance score based on the metric used."""
|
"""Normalize distance score based on the metric used."""
|
||||||
@ -150,9 +210,7 @@ class PineconeClient(VectorDBBase):
|
|||||||
|
|
||||||
def has_collection(self, collection_name: str) -> bool:
|
def has_collection(self, collection_name: str) -> bool:
|
||||||
"""Check if a collection exists by searching for at least one item."""
|
"""Check if a collection exists by searching for at least one item."""
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Search for at least 1 item with this collection name in metadata
|
# Search for at least 1 item with this collection name in metadata
|
||||||
@ -171,9 +229,7 @@ class PineconeClient(VectorDBBase):
|
|||||||
|
|
||||||
def delete_collection(self, collection_name: str) -> None:
|
def delete_collection(self, collection_name: str) -> None:
|
||||||
"""Delete a collection by removing all vectors with the collection name in metadata."""
|
"""Delete a collection by removing all vectors with the collection name in metadata."""
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
try:
|
try:
|
||||||
self.index.delete(filter={"collection_name": collection_name_with_prefix})
|
self.index.delete(filter={"collection_name": collection_name_with_prefix})
|
||||||
log.info(
|
log.info(
|
||||||
@ -185,25 +241,24 @@ class PineconeClient(VectorDBBase):
|
|||||||
)
|
)
|
||||||
raise
|
raise
|
||||||
|
|
||||||
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
|
async def insert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||||
"""Insert vectors into a collection."""
|
"""Insert vectors into a collection."""
|
||||||
|
import time
|
||||||
if not items:
|
if not items:
|
||||||
log.warning("No items to insert")
|
log.warning("No items to insert")
|
||||||
return
|
return
|
||||||
|
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
points = self._create_points(items, collection_name_with_prefix)
|
points = self._create_points(items, collection_name_with_prefix)
|
||||||
|
|
||||||
# Insert in batches for better performance and reliability
|
# Insert in batches for better performance and reliability
|
||||||
for i in range(0, len(points), BATCH_SIZE):
|
for i in range(0, len(points), BATCH_SIZE):
|
||||||
batch = points[i : i + BATCH_SIZE]
|
batch = points[i : i + BATCH_SIZE]
|
||||||
try:
|
try:
|
||||||
self.index.upsert(vectors=batch)
|
start = time.time()
|
||||||
log.debug(
|
await asyncio.to_thread(self.index.upsert, vectors=batch)
|
||||||
f"Inserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
|
elapsed = int((time.time() - start) * 1000)
|
||||||
)
|
# Log line removed as requested
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
log.error(
|
log.error(
|
||||||
f"Error inserting batch into '{collection_name_with_prefix}': {e}"
|
f"Error inserting batch into '{collection_name_with_prefix}': {e}"
|
||||||
@ -214,25 +269,24 @@ class PineconeClient(VectorDBBase):
|
|||||||
f"Successfully inserted {len(items)} vectors into '{collection_name_with_prefix}'"
|
f"Successfully inserted {len(items)} vectors into '{collection_name_with_prefix}'"
|
||||||
)
|
)
|
||||||
|
|
||||||
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
|
async def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
|
||||||
"""Upsert (insert or update) vectors into a collection."""
|
"""Upsert (insert or update) vectors into a collection."""
|
||||||
|
import time
|
||||||
if not items:
|
if not items:
|
||||||
log.warning("No items to upsert")
|
log.warning("No items to upsert")
|
||||||
return
|
return
|
||||||
|
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
points = self._create_points(items, collection_name_with_prefix)
|
points = self._create_points(items, collection_name_with_prefix)
|
||||||
|
|
||||||
# Upsert in batches
|
# Upsert in batches
|
||||||
for i in range(0, len(points), BATCH_SIZE):
|
for i in range(0, len(points), BATCH_SIZE):
|
||||||
batch = points[i : i + BATCH_SIZE]
|
batch = points[i : i + BATCH_SIZE]
|
||||||
try:
|
try:
|
||||||
self.index.upsert(vectors=batch)
|
start = time.time()
|
||||||
log.debug(
|
await asyncio.to_thread(self.index.upsert, vectors=batch)
|
||||||
f"Upserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
|
elapsed = int((time.time() - start) * 1000)
|
||||||
)
|
# Log line removed as requested
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
log.error(
|
log.error(
|
||||||
f"Error upserting batch into '{collection_name_with_prefix}': {e}"
|
f"Error upserting batch into '{collection_name_with_prefix}': {e}"
|
||||||
@ -251,9 +305,7 @@ class PineconeClient(VectorDBBase):
|
|||||||
log.warning("No vectors provided for search")
|
log.warning("No vectors provided for search")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
|
|
||||||
if limit is None or limit <= 0:
|
if limit is None or limit <= 0:
|
||||||
limit = NO_LIMIT
|
limit = NO_LIMIT
|
||||||
@ -304,9 +356,7 @@ class PineconeClient(VectorDBBase):
|
|||||||
self, collection_name: str, filter: Dict, limit: Optional[int] = None
|
self, collection_name: str, filter: Dict, limit: Optional[int] = None
|
||||||
) -> Optional[GetResult]:
|
) -> Optional[GetResult]:
|
||||||
"""Query vectors by metadata filter."""
|
"""Query vectors by metadata filter."""
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
|
|
||||||
if limit is None or limit <= 0:
|
if limit is None or limit <= 0:
|
||||||
limit = NO_LIMIT
|
limit = NO_LIMIT
|
||||||
@ -336,9 +386,7 @@ class PineconeClient(VectorDBBase):
|
|||||||
|
|
||||||
def get(self, collection_name: str) -> Optional[GetResult]:
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
||||||
"""Get all vectors in a collection."""
|
"""Get all vectors in a collection."""
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
collection_name_with_prefix = self._get_namespace()
|
||||||
collection_name
|
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Use a zero vector for fetching all entries
|
# Use a zero vector for fetching all entries
|
||||||
@ -358,16 +406,15 @@ class PineconeClient(VectorDBBase):
|
|||||||
log.error(f"Error getting collection '{collection_name}': {e}")
|
log.error(f"Error getting collection '{collection_name}': {e}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def delete(
|
async def delete(
|
||||||
self,
|
self,
|
||||||
collection_name: str,
|
collection_name: str,
|
||||||
ids: Optional[List[str]] = None,
|
ids: Optional[List[str]] = None,
|
||||||
filter: Optional[Dict] = None,
|
filter: Optional[Dict] = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Delete vectors by IDs or filter."""
|
"""Delete vectors by IDs or filter."""
|
||||||
collection_name_with_prefix = self._get_collection_name_with_prefix(
|
import time
|
||||||
collection_name
|
collection_name_with_prefix = self._get_namespace()
|
||||||
)
|
|
||||||
|
|
||||||
try:
|
try:
|
||||||
if ids:
|
if ids:
|
||||||
@ -376,10 +423,10 @@ class PineconeClient(VectorDBBase):
|
|||||||
batch_ids = ids[i : i + BATCH_SIZE]
|
batch_ids = ids[i : i + BATCH_SIZE]
|
||||||
# Note: When deleting by ID, we can't filter by collection_name
|
# Note: When deleting by ID, we can't filter by collection_name
|
||||||
# This is a limitation of Pinecone - be careful with ID uniqueness
|
# This is a limitation of Pinecone - be careful with ID uniqueness
|
||||||
self.index.delete(ids=batch_ids)
|
start = time.time()
|
||||||
log.debug(
|
await asyncio.to_thread(self.index.delete, ids=batch_ids)
|
||||||
f"Deleted batch of {len(batch_ids)} vectors by ID from '{collection_name_with_prefix}'"
|
elapsed = int((time.time() - start) * 1000)
|
||||||
)
|
# Log line removed as requested
|
||||||
log.info(
|
log.info(
|
||||||
f"Successfully deleted {len(ids)} vectors by ID from '{collection_name_with_prefix}'"
|
f"Successfully deleted {len(ids)} vectors by ID from '{collection_name_with_prefix}'"
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user