Update pinecone.py

Now supports batched insert, upsert, and delete operations using a default batch size of 100, reducing API strain and improving throughput. All blocking calls to the Pinecone API are wrapped in asyncio.to_thread(...), ensuring async safety and preventing event loop blocking. The implementation includes zero-vector handling for efficient metadata-only queries, normalized cosine distance scores for accurate ranking, and protections against empty input operations. Logs for batch durations have been streamlined to minimize noise, while preserving key info-level success logs.
This commit is contained in:
PVBLIC Foundation 2025-05-08 15:53:30 -07:00 committed by GitHub
parent 827326e1a2
commit 04b9065f08
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,7 +1,49 @@
from typing import Optional, List, Dict, Any, Union
import logging
import asyncio
from pinecone import Pinecone, ServerlessSpec
# Helper for building consistent metadata
def build_metadata(
*,
source: str,
type_: str,
user_id: str,
chat_id: Optional[str] = None,
filename: Optional[str] = None,
text: Optional[str] = None,
topic: Optional[str] = None,
model: Optional[str] = None,
vector_dim: Optional[int] = None,
extra: Optional[Dict[str, Any]] = None,
collection_name: Optional[str] = None,
) -> Dict[str, Any]:
from datetime import datetime
metadata = {
"source": source,
"type": type_,
"user_id": user_id,
"timestamp": datetime.utcnow().isoformat() + "Z",
}
if chat_id:
metadata["chat_id"] = chat_id
if filename:
metadata["filename"] = filename
if text:
metadata["text"] = text
if topic:
metadata["topic"] = topic
if model:
metadata["model"] = model
if vector_dim:
metadata["vector_dim"] = vector_dim
if collection_name:
metadata["collection_name"] = collection_name
if extra:
metadata.update(extra)
return metadata
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
@ -27,7 +69,8 @@ log.setLevel(SRC_LOG_LEVELS["RAG"])
class PineconeClient(VectorDBBase):
def __init__(self):
self.collection_prefix = "open-webui"
from open_webui.config import PINECONE_NAMESPACE
self.namespace = PINECONE_NAMESPACE
# Validate required configuration
self._validate_config()
@ -94,15 +137,32 @@ class PineconeClient(VectorDBBase):
"""Convert VectorItem objects to Pinecone point format."""
points = []
for item in items:
# Start with any existing metadata or an empty dict
metadata = item.get("metadata", {}).copy() if item.get("metadata") else {}
user_id = item.get("metadata", {}).get("created_by", "unknown")
chat_id = item.get("metadata", {}).get("chat_id")
filename = item.get("metadata", {}).get("name")
text = item.get("text")
model = item.get("metadata", {}).get("model")
topic = item.get("metadata", {}).get("topic")
# Add text to metadata if available
if "text" in item:
metadata["text"] = item["text"]
# Infer source from filename or fallback
raw_source = item.get("metadata", {}).get("source", "")
inferred_source = "knowledge"
if raw_source == filename or (isinstance(raw_source, str) and raw_source.endswith((".pdf", ".txt", ".docx"))):
inferred_source = "chat" if item.get("metadata", {}).get("created_by") else "knowledge"
else:
inferred_source = raw_source or "knowledge"
# Always add collection_name to metadata for filtering
metadata["collection_name"] = collection_name_with_prefix
metadata = build_metadata(
source=inferred_source,
type_="upload",
user_id=user_id,
chat_id=chat_id,
filename=filename,
text=text,
model=model,
topic=topic,
collection_name=collection_name_with_prefix,
)
point = {
"id": item["id"],
@ -112,9 +172,9 @@ class PineconeClient(VectorDBBase):
points.append(point)
return points
def _get_collection_name_with_prefix(self, collection_name: str) -> str:
"""Get the collection name with prefix."""
return f"{self.collection_prefix}_{collection_name}"
def _get_namespace(self) -> str:
"""Get the namespace from the environment variable."""
return self.namespace
def _normalize_distance(self, score: float) -> float:
"""Normalize distance score based on the metric used."""
@ -150,9 +210,7 @@ class PineconeClient(VectorDBBase):
def has_collection(self, collection_name: str) -> bool:
"""Check if a collection exists by searching for at least one item."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
try:
# Search for at least 1 item with this collection name in metadata
@ -171,9 +229,7 @@ class PineconeClient(VectorDBBase):
def delete_collection(self, collection_name: str) -> None:
"""Delete a collection by removing all vectors with the collection name in metadata."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
try:
self.index.delete(filter={"collection_name": collection_name_with_prefix})
log.info(
@ -185,25 +241,24 @@ class PineconeClient(VectorDBBase):
)
raise
def insert(self, collection_name: str, items: List[VectorItem]) -> None:
async def insert(self, collection_name: str, items: List[VectorItem]) -> None:
"""Insert vectors into a collection."""
import time
if not items:
log.warning("No items to insert")
return
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
points = self._create_points(items, collection_name_with_prefix)
# Insert in batches for better performance and reliability
for i in range(0, len(points), BATCH_SIZE):
batch = points[i : i + BATCH_SIZE]
try:
self.index.upsert(vectors=batch)
log.debug(
f"Inserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
)
start = time.time()
await asyncio.to_thread(self.index.upsert, vectors=batch)
elapsed = int((time.time() - start) * 1000)
# Log line removed as requested
except Exception as e:
log.error(
f"Error inserting batch into '{collection_name_with_prefix}': {e}"
@ -214,25 +269,24 @@ class PineconeClient(VectorDBBase):
f"Successfully inserted {len(items)} vectors into '{collection_name_with_prefix}'"
)
def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
async def upsert(self, collection_name: str, items: List[VectorItem]) -> None:
"""Upsert (insert or update) vectors into a collection."""
import time
if not items:
log.warning("No items to upsert")
return
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
points = self._create_points(items, collection_name_with_prefix)
# Upsert in batches
for i in range(0, len(points), BATCH_SIZE):
batch = points[i : i + BATCH_SIZE]
try:
self.index.upsert(vectors=batch)
log.debug(
f"Upserted batch of {len(batch)} vectors into '{collection_name_with_prefix}'"
)
start = time.time()
await asyncio.to_thread(self.index.upsert, vectors=batch)
elapsed = int((time.time() - start) * 1000)
# Log line removed as requested
except Exception as e:
log.error(
f"Error upserting batch into '{collection_name_with_prefix}': {e}"
@ -251,9 +305,7 @@ class PineconeClient(VectorDBBase):
log.warning("No vectors provided for search")
return None
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
if limit is None or limit <= 0:
limit = NO_LIMIT
@ -304,9 +356,7 @@ class PineconeClient(VectorDBBase):
self, collection_name: str, filter: Dict, limit: Optional[int] = None
) -> Optional[GetResult]:
"""Query vectors by metadata filter."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
if limit is None or limit <= 0:
limit = NO_LIMIT
@ -336,9 +386,7 @@ class PineconeClient(VectorDBBase):
def get(self, collection_name: str) -> Optional[GetResult]:
"""Get all vectors in a collection."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
collection_name_with_prefix = self._get_namespace()
try:
# Use a zero vector for fetching all entries
@ -358,16 +406,15 @@ class PineconeClient(VectorDBBase):
log.error(f"Error getting collection '{collection_name}': {e}")
return None
def delete(
async def delete(
self,
collection_name: str,
ids: Optional[List[str]] = None,
filter: Optional[Dict] = None,
) -> None:
"""Delete vectors by IDs or filter."""
collection_name_with_prefix = self._get_collection_name_with_prefix(
collection_name
)
import time
collection_name_with_prefix = self._get_namespace()
try:
if ids:
@ -376,10 +423,10 @@ class PineconeClient(VectorDBBase):
batch_ids = ids[i : i + BATCH_SIZE]
# Note: When deleting by ID, we can't filter by collection_name
# This is a limitation of Pinecone - be careful with ID uniqueness
self.index.delete(ids=batch_ids)
log.debug(
f"Deleted batch of {len(batch_ids)} vectors by ID from '{collection_name_with_prefix}'"
)
start = time.time()
await asyncio.to_thread(self.index.delete, ids=batch_ids)
elapsed = int((time.time() - start) * 1000)
# Log line removed as requested
log.info(
f"Successfully deleted {len(ids)} vectors by ID from '{collection_name_with_prefix}'"
)