mirror of
https://github.com/deepseek-ai/Janus
synced 2024-12-28 14:52:12 +00:00
528 lines
17 KiB
Python
Executable File
528 lines
17 KiB
Python
Executable File
# Copyright (c) 2023-2024 DeepSeek.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
# this software and associated documentation files (the "Software"), to deal in
|
|
# the Software without restriction, including without limitation the rights to
|
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
# subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from functools import partial
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
codebook_size: int = 16384
|
|
codebook_embed_dim: int = 8
|
|
codebook_l2_norm: bool = True
|
|
codebook_show_usage: bool = True
|
|
commit_loss_beta: float = 0.25
|
|
entropy_loss_ratio: float = 0.0
|
|
|
|
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
|
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
|
|
z_channels: int = 256
|
|
dropout_p: float = 0.0
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels=3,
|
|
ch=128,
|
|
ch_mult=(1, 1, 2, 2, 4),
|
|
num_res_blocks=2,
|
|
norm_type="group",
|
|
dropout=0.0,
|
|
resamp_with_conv=True,
|
|
z_channels=256,
|
|
):
|
|
super().__init__()
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
|
|
|
|
# downsampling
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
self.conv_blocks = nn.ModuleList()
|
|
for i_level in range(self.num_resolutions):
|
|
conv_block = nn.Module()
|
|
# res & attn
|
|
res_block = nn.ModuleList()
|
|
attn_block = nn.ModuleList()
|
|
block_in = ch * in_ch_mult[i_level]
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks):
|
|
res_block.append(
|
|
ResnetBlock(
|
|
block_in, block_out, dropout=dropout, norm_type=norm_type
|
|
)
|
|
)
|
|
block_in = block_out
|
|
if i_level == self.num_resolutions - 1:
|
|
attn_block.append(AttnBlock(block_in, norm_type))
|
|
conv_block.res = res_block
|
|
conv_block.attn = attn_block
|
|
# downsample
|
|
if i_level != self.num_resolutions - 1:
|
|
conv_block.downsample = Downsample(block_in, resamp_with_conv)
|
|
self.conv_blocks.append(conv_block)
|
|
|
|
# middle
|
|
self.mid = nn.ModuleList()
|
|
self.mid.append(
|
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
|
|
)
|
|
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
|
self.mid.append(
|
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
|
|
)
|
|
|
|
# end
|
|
self.norm_out = Normalize(block_in, norm_type)
|
|
self.conv_out = nn.Conv2d(
|
|
block_in, z_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def forward(self, x):
|
|
h = self.conv_in(x)
|
|
# downsampling
|
|
for i_level, block in enumerate(self.conv_blocks):
|
|
for i_block in range(self.num_res_blocks):
|
|
h = block.res[i_block](h)
|
|
if len(block.attn) > 0:
|
|
h = block.attn[i_block](h)
|
|
if i_level != self.num_resolutions - 1:
|
|
h = block.downsample(h)
|
|
|
|
# middle
|
|
for mid_block in self.mid:
|
|
h = mid_block(h)
|
|
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = nonlinearity(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
z_channels=256,
|
|
ch=128,
|
|
ch_mult=(1, 1, 2, 2, 4),
|
|
num_res_blocks=2,
|
|
norm_type="group",
|
|
dropout=0.0,
|
|
resamp_with_conv=True,
|
|
out_channels=3,
|
|
):
|
|
super().__init__()
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
# z to block_in
|
|
self.conv_in = nn.Conv2d(
|
|
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
# middle
|
|
self.mid = nn.ModuleList()
|
|
self.mid.append(
|
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
|
|
)
|
|
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
|
|
self.mid.append(
|
|
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
|
|
)
|
|
|
|
# upsampling
|
|
self.conv_blocks = nn.ModuleList()
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
conv_block = nn.Module()
|
|
# res & attn
|
|
res_block = nn.ModuleList()
|
|
attn_block = nn.ModuleList()
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks + 1):
|
|
res_block.append(
|
|
ResnetBlock(
|
|
block_in, block_out, dropout=dropout, norm_type=norm_type
|
|
)
|
|
)
|
|
block_in = block_out
|
|
if i_level == self.num_resolutions - 1:
|
|
attn_block.append(AttnBlock(block_in, norm_type))
|
|
conv_block.res = res_block
|
|
conv_block.attn = attn_block
|
|
# downsample
|
|
if i_level != 0:
|
|
conv_block.upsample = Upsample(block_in, resamp_with_conv)
|
|
self.conv_blocks.append(conv_block)
|
|
|
|
# end
|
|
self.norm_out = Normalize(block_in, norm_type)
|
|
self.conv_out = nn.Conv2d(
|
|
block_in, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
@property
|
|
def last_layer(self):
|
|
return self.conv_out.weight
|
|
|
|
def forward(self, z):
|
|
# z to block_in
|
|
h = self.conv_in(z)
|
|
|
|
# middle
|
|
for mid_block in self.mid:
|
|
h = mid_block(h)
|
|
|
|
# upsampling
|
|
for i_level, block in enumerate(self.conv_blocks):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = block.res[i_block](h)
|
|
if len(block.attn) > 0:
|
|
h = block.attn[i_block](h)
|
|
if i_level != self.num_resolutions - 1:
|
|
h = block.upsample(h)
|
|
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = nonlinearity(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
|
|
class VectorQuantizer(nn.Module):
|
|
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
|
|
super().__init__()
|
|
self.n_e = n_e
|
|
self.e_dim = e_dim
|
|
self.beta = beta
|
|
self.entropy_loss_ratio = entropy_loss_ratio
|
|
self.l2_norm = l2_norm
|
|
self.show_usage = show_usage
|
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
|
if self.l2_norm:
|
|
self.embedding.weight.data = F.normalize(
|
|
self.embedding.weight.data, p=2, dim=-1
|
|
)
|
|
if self.show_usage:
|
|
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
|
|
|
|
def forward(self, z):
|
|
# reshape z -> (batch, height, width, channel) and flatten
|
|
z = torch.einsum("b c h w -> b h w c", z).contiguous()
|
|
z_flattened = z.view(-1, self.e_dim)
|
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
|
|
|
if self.l2_norm:
|
|
z = F.normalize(z, p=2, dim=-1)
|
|
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
|
|
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
|
else:
|
|
embedding = self.embedding.weight
|
|
|
|
d = (
|
|
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
|
+ torch.sum(embedding**2, dim=1)
|
|
- 2
|
|
* torch.einsum(
|
|
"bd,dn->bn", z_flattened, torch.einsum("n d -> d n", embedding)
|
|
)
|
|
)
|
|
|
|
min_encoding_indices = torch.argmin(d, dim=1)
|
|
z_q = embedding[min_encoding_indices].view(z.shape)
|
|
perplexity = None
|
|
min_encodings = None
|
|
vq_loss = None
|
|
commit_loss = None
|
|
entropy_loss = None
|
|
|
|
# compute loss for embedding
|
|
if self.training:
|
|
vq_loss = torch.mean((z_q - z.detach()) ** 2)
|
|
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
|
|
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
|
|
|
|
# preserve gradients
|
|
z_q = z + (z_q - z).detach()
|
|
|
|
# reshape back to match original input shape
|
|
z_q = torch.einsum("b h w c -> b c h w", z_q)
|
|
|
|
return (
|
|
z_q,
|
|
(vq_loss, commit_loss, entropy_loss),
|
|
(perplexity, min_encodings, min_encoding_indices),
|
|
)
|
|
|
|
def get_codebook_entry(self, indices, shape=None, channel_first=True):
|
|
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
|
|
if self.l2_norm:
|
|
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
|
else:
|
|
embedding = self.embedding.weight
|
|
z_q = embedding[indices] # (b*h*w, c)
|
|
|
|
if shape is not None:
|
|
if channel_first:
|
|
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
|
|
# reshape back to match original input shape
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
|
else:
|
|
z_q = z_q.view(shape)
|
|
return z_q
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout=0.0,
|
|
norm_type="group",
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
|
|
self.norm1 = Normalize(in_channels, norm_type)
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
self.norm2 = Normalize(out_channels, norm_type)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.conv2 = nn.Conv2d(
|
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
self.conv_shortcut = nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
else:
|
|
self.nin_shortcut = nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
h = x
|
|
h = self.norm1(h)
|
|
h = nonlinearity(h)
|
|
h = self.conv1(h)
|
|
h = self.norm2(h)
|
|
h = nonlinearity(h)
|
|
h = self.dropout(h)
|
|
h = self.conv2(h)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
x = self.conv_shortcut(x)
|
|
else:
|
|
x = self.nin_shortcut(x)
|
|
return x + h
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
def __init__(self, in_channels, norm_type="group"):
|
|
super().__init__()
|
|
self.norm = Normalize(in_channels, norm_type)
|
|
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.proj_out = nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
h_ = x
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
# compute attention
|
|
b, c, h, w = q.shape
|
|
q = q.reshape(b, c, h * w)
|
|
q = q.permute(0, 2, 1) # b,hw,c
|
|
k = k.reshape(b, c, h * w) # b,c,hw
|
|
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
|
w_ = w_ * (int(c) ** (-0.5))
|
|
w_ = F.softmax(w_, dim=2)
|
|
|
|
# attend to values
|
|
v = v.reshape(b, c, h * w)
|
|
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
|
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
|
h_ = h_.reshape(b, c, h, w)
|
|
|
|
h_ = self.proj_out(h_)
|
|
|
|
return x + h_
|
|
|
|
|
|
def nonlinearity(x):
|
|
# swish
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
def Normalize(in_channels, norm_type="group"):
|
|
assert norm_type in ["group", "batch"]
|
|
if norm_type == "group":
|
|
return nn.GroupNorm(
|
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
|
|
)
|
|
elif norm_type == "batch":
|
|
return nn.SyncBatchNorm(in_channels)
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, in_channels, with_conv):
|
|
super().__init__()
|
|
self.with_conv = with_conv
|
|
if self.with_conv:
|
|
self.conv = nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def forward(self, x):
|
|
if x.dtype != torch.float32:
|
|
x = F.interpolate(x.to(torch.float), scale_factor=2.0, mode="nearest").to(
|
|
torch.bfloat16
|
|
)
|
|
else:
|
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
|
|
|
|
if self.with_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, in_channels, with_conv):
|
|
super().__init__()
|
|
self.with_conv = with_conv
|
|
if self.with_conv:
|
|
# no asymmetric padding in torch conv, must do it ourselves
|
|
self.conv = nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.with_conv:
|
|
pad = (0, 1, 0, 1)
|
|
x = F.pad(x, pad, mode="constant", value=0)
|
|
x = self.conv(x)
|
|
else:
|
|
x = F.avg_pool2d(x, kernel_size=2, stride=2)
|
|
return x
|
|
|
|
|
|
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
|
|
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
|
|
flat_affinity /= temperature
|
|
probs = F.softmax(flat_affinity, dim=-1)
|
|
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
|
|
if loss_type == "softmax":
|
|
target_probs = probs
|
|
else:
|
|
raise ValueError("Entropy loss {} not supported".format(loss_type))
|
|
avg_probs = torch.mean(target_probs, dim=0)
|
|
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
|
|
sample_entropy = -torch.mean(torch.sum(target_probs * log_probs, dim=-1))
|
|
loss = sample_entropy - avg_entropy
|
|
return loss
|
|
|
|
|
|
class VQModel(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.config = config
|
|
self.encoder = Encoder(
|
|
ch_mult=config.encoder_ch_mult,
|
|
z_channels=config.z_channels,
|
|
dropout=config.dropout_p,
|
|
)
|
|
self.decoder = Decoder(
|
|
ch_mult=config.decoder_ch_mult,
|
|
z_channels=config.z_channels,
|
|
dropout=config.dropout_p,
|
|
)
|
|
|
|
self.quantize = VectorQuantizer(
|
|
config.codebook_size,
|
|
config.codebook_embed_dim,
|
|
config.commit_loss_beta,
|
|
config.entropy_loss_ratio,
|
|
config.codebook_l2_norm,
|
|
config.codebook_show_usage,
|
|
)
|
|
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
|
|
self.post_quant_conv = nn.Conv2d(
|
|
config.codebook_embed_dim, config.z_channels, 1
|
|
)
|
|
|
|
def encode(self, x):
|
|
h = self.encoder(x)
|
|
h = self.quant_conv(h)
|
|
quant, emb_loss, info = self.quantize(h)
|
|
return quant, emb_loss, info
|
|
|
|
def decode(self, quant):
|
|
quant = self.post_quant_conv(quant)
|
|
dec = self.decoder(quant)
|
|
return dec
|
|
|
|
def decode_code(self, code_b, shape=None, channel_first=True):
|
|
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
|
|
dec = self.decode(quant_b)
|
|
return dec
|
|
|
|
def forward(self, input):
|
|
quant, diff, _ = self.encode(input)
|
|
dec = self.decode(quant)
|
|
return dec, diff
|
|
|
|
|
|
#################################################################################
|
|
# VQ Model Configs #
|
|
#################################################################################
|
|
def VQ_16(**kwargs):
|
|
return VQModel(
|
|
ModelArgs(
|
|
encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs
|
|
)
|
|
)
|
|
|
|
|
|
VQ_models = {"VQ-16": VQ_16}
|