Janus/janus/models/vq_model.py
wuchengyue 659982f413 commit
2024-10-18 11:58:52 +08:00

528 lines
17 KiB
Python
Executable File

# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from dataclasses import dataclass, field
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
@dataclass
class ModelArgs:
codebook_size: int = 16384
codebook_embed_dim: int = 8
codebook_l2_norm: bool = True
codebook_show_usage: bool = True
commit_loss_beta: float = 0.25
entropy_loss_ratio: float = 0.0
encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4])
z_channels: int = 256
dropout_p: float = 0.0
class Encoder(nn.Module):
def __init__(
self,
in_channels=3,
ch=128,
ch_mult=(1, 1, 2, 2, 4),
num_res_blocks=2,
norm_type="group",
dropout=0.0,
resamp_with_conv=True,
z_channels=256,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1)
# downsampling
in_ch_mult = (1,) + tuple(ch_mult)
self.conv_blocks = nn.ModuleList()
for i_level in range(self.num_resolutions):
conv_block = nn.Module()
# res & attn
res_block = nn.ModuleList()
attn_block = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
res_block.append(
ResnetBlock(
block_in, block_out, dropout=dropout, norm_type=norm_type
)
)
block_in = block_out
if i_level == self.num_resolutions - 1:
attn_block.append(AttnBlock(block_in, norm_type))
conv_block.res = res_block
conv_block.attn = attn_block
# downsample
if i_level != self.num_resolutions - 1:
conv_block.downsample = Downsample(block_in, resamp_with_conv)
self.conv_blocks.append(conv_block)
# middle
self.mid = nn.ModuleList()
self.mid.append(
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
)
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
self.mid.append(
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
)
# end
self.norm_out = Normalize(block_in, norm_type)
self.conv_out = nn.Conv2d(
block_in, z_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
h = self.conv_in(x)
# downsampling
for i_level, block in enumerate(self.conv_blocks):
for i_block in range(self.num_res_blocks):
h = block.res[i_block](h)
if len(block.attn) > 0:
h = block.attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = block.downsample(h)
# middle
for mid_block in self.mid:
h = mid_block(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
z_channels=256,
ch=128,
ch_mult=(1, 1, 2, 2, 4),
num_res_blocks=2,
norm_type="group",
dropout=0.0,
resamp_with_conv=True,
out_channels=3,
):
super().__init__()
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
block_in = ch * ch_mult[self.num_resolutions - 1]
# z to block_in
self.conv_in = nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.ModuleList()
self.mid.append(
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
)
self.mid.append(AttnBlock(block_in, norm_type=norm_type))
self.mid.append(
ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type)
)
# upsampling
self.conv_blocks = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
conv_block = nn.Module()
# res & attn
res_block = nn.ModuleList()
attn_block = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
res_block.append(
ResnetBlock(
block_in, block_out, dropout=dropout, norm_type=norm_type
)
)
block_in = block_out
if i_level == self.num_resolutions - 1:
attn_block.append(AttnBlock(block_in, norm_type))
conv_block.res = res_block
conv_block.attn = attn_block
# downsample
if i_level != 0:
conv_block.upsample = Upsample(block_in, resamp_with_conv)
self.conv_blocks.append(conv_block)
# end
self.norm_out = Normalize(block_in, norm_type)
self.conv_out = nn.Conv2d(
block_in, out_channels, kernel_size=3, stride=1, padding=1
)
@property
def last_layer(self):
return self.conv_out.weight
def forward(self, z):
# z to block_in
h = self.conv_in(z)
# middle
for mid_block in self.mid:
h = mid_block(h)
# upsampling
for i_level, block in enumerate(self.conv_blocks):
for i_block in range(self.num_res_blocks + 1):
h = block.res[i_block](h)
if len(block.attn) > 0:
h = block.attn[i_block](h)
if i_level != self.num_resolutions - 1:
h = block.upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class VectorQuantizer(nn.Module):
def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.entropy_loss_ratio = entropy_loss_ratio
self.l2_norm = l2_norm
self.show_usage = show_usage
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
if self.l2_norm:
self.embedding.weight.data = F.normalize(
self.embedding.weight.data, p=2, dim=-1
)
if self.show_usage:
self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536)))
def forward(self, z):
# reshape z -> (batch, height, width, channel) and flatten
z = torch.einsum("b c h w -> b h w c", z).contiguous()
z_flattened = z.view(-1, self.e_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
if self.l2_norm:
z = F.normalize(z, p=2, dim=-1)
z_flattened = F.normalize(z_flattened, p=2, dim=-1)
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
else:
embedding = self.embedding.weight
d = (
torch.sum(z_flattened**2, dim=1, keepdim=True)
+ torch.sum(embedding**2, dim=1)
- 2
* torch.einsum(
"bd,dn->bn", z_flattened, torch.einsum("n d -> d n", embedding)
)
)
min_encoding_indices = torch.argmin(d, dim=1)
z_q = embedding[min_encoding_indices].view(z.shape)
perplexity = None
min_encodings = None
vq_loss = None
commit_loss = None
entropy_loss = None
# compute loss for embedding
if self.training:
vq_loss = torch.mean((z_q - z.detach()) ** 2)
commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2)
entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = torch.einsum("b h w c -> b c h w", z_q)
return (
z_q,
(vq_loss, commit_loss, entropy_loss),
(perplexity, min_encodings, min_encoding_indices),
)
def get_codebook_entry(self, indices, shape=None, channel_first=True):
# shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel)
if self.l2_norm:
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
else:
embedding = self.embedding.weight
z_q = embedding[indices] # (b*h*w, c)
if shape is not None:
if channel_first:
z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1])
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
else:
z_q = z_q.view(shape)
return z_q
class ResnetBlock(nn.Module):
def __init__(
self,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout=0.0,
norm_type="group",
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, norm_type)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = Normalize(out_channels, norm_type)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
else:
self.nin_shortcut = nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type="group"):
super().__init__()
self.norm = Normalize(in_channels, norm_type)
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = F.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
def nonlinearity(x):
# swish
return x * torch.sigmoid(x)
def Normalize(in_channels, norm_type="group"):
assert norm_type in ["group", "batch"]
if norm_type == "group":
return nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
elif norm_type == "batch":
return nn.SyncBatchNorm(in_channels)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
if x.dtype != torch.float32:
x = F.interpolate(x.to(torch.float), scale_factor=2.0, mode="nearest").to(
torch.bfloat16
)
else:
x = F.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = F.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = F.avg_pool2d(x, kernel_size=2, stride=2)
return x
def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01):
flat_affinity = affinity.reshape(-1, affinity.shape[-1])
flat_affinity /= temperature
probs = F.softmax(flat_affinity, dim=-1)
log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1)
if loss_type == "softmax":
target_probs = probs
else:
raise ValueError("Entropy loss {} not supported".format(loss_type))
avg_probs = torch.mean(target_probs, dim=0)
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + 1e-5))
sample_entropy = -torch.mean(torch.sum(target_probs * log_probs, dim=-1))
loss = sample_entropy - avg_entropy
return loss
class VQModel(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.config = config
self.encoder = Encoder(
ch_mult=config.encoder_ch_mult,
z_channels=config.z_channels,
dropout=config.dropout_p,
)
self.decoder = Decoder(
ch_mult=config.decoder_ch_mult,
z_channels=config.z_channels,
dropout=config.dropout_p,
)
self.quantize = VectorQuantizer(
config.codebook_size,
config.codebook_embed_dim,
config.commit_loss_beta,
config.entropy_loss_ratio,
config.codebook_l2_norm,
config.codebook_show_usage,
)
self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1)
self.post_quant_conv = nn.Conv2d(
config.codebook_embed_dim, config.z_channels, 1
)
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b, shape=None, channel_first=True):
quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first)
dec = self.decode(quant_b)
return dec
def forward(self, input):
quant, diff, _ = self.encode(input)
dec = self.decode(quant)
return dec, diff
#################################################################################
# VQ Model Configs #
#################################################################################
def VQ_16(**kwargs):
return VQModel(
ModelArgs(
encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs
)
)
VQ_models = {"VQ-16": VQ_16}