Janus/janus/janusflow/models/uvit.py
2024-11-13 11:39:22 +08:00

715 lines
22 KiB
Python

# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# modified from: https://github.com/lucidrains/denoising-diffusion-pytorch/blob/main/denoising_diffusion_pytorch/simple_diffusion.py
import math
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
from typing import Optional, Tuple, Union
import numpy as np
import torchvision
import torchvision.utils
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
from transformers.models.llama.modeling_llama import LlamaRMSNorm as RMSNorm
class ImageHead(nn.Module):
def __init__(self, decoder_cfg, gpt_cfg, layer_id=None):
super().__init__()
self.layer_id = layer_id
cfg = (
AttrDict(
norm_type="layernorm",
is_exp_norm=False,
sequence_parallel=False,
use_userbuffer=False,
norm_eps=1e-5,
norm_bias=True,
gradient_accumulation_fusion=True,
use_fp32_head_weight=False,
)
+ gpt_cfg
)
group = PG.tensor_parallel_group()
assert cfg.norm_type in [
"layernorm",
"rmsnorm",
], f"Norm type:{cfg.norm_type} not supported"
if cfg.norm_type == "rmsnorm":
self.norm = DropoutAddRMSNorm(
cfg.n_embed,
prenorm=False,
eps=cfg.norm_eps,
is_exp_norm=cfg.is_exp_norm,
sequence_parallel=cfg.sequence_parallel,
)
else:
self.norm = DropoutAddLayerNorm(
cfg.n_embed,
prenorm=False,
eps=cfg.norm_eps,
is_exp_norm=cfg.is_exp_norm,
sequence_parallel=cfg.sequence_parallel,
bias=cfg.norm_bias,
)
multiple_of = 256
if decoder_cfg.in_channels % multiple_of != 0:
warnings.warn(
f"建议把 vocab_size 设置为 {multiple_of} 的倍数, 否则会影响矩阵乘法的性能"
)
dtype = default_dtype = torch.get_default_dtype()
if cfg.use_fp32_head_weight:
dtype = torch.float32
print(
"使用 fp32 head weight!!!! 与原来的 bf16 head weight 不兼容\n",
end="",
flush=True,
)
torch.set_default_dtype(dtype)
self.head = ColumnParallelLinear(
cfg.n_embed,
decoder_cfg.in_channels,
bias=True,
group=group,
sequence_parallel=cfg.sequence_parallel,
use_userbuffer=cfg.use_userbuffer,
gradient_accumulation_fusion=cfg.gradient_accumulation_fusion,
use_fp32_output=False,
)
torch.set_default_dtype(default_dtype)
self.use_fp32_head_weight = cfg.use_fp32_head_weight
def forward(
self, input_args, images_split_mask: Optional[torch.BoolTensor] = None, **kwargs
):
residual = None
if isinstance(input_args, tuple):
x, residual = input_args
else:
x = input_args
x = self.norm(x, residual)
if self.use_fp32_head_weight:
assert (
self.head.weight.dtype == torch.float32
), f"head.weight is {self.head.weight.dtype}"
x = x.float()
if images_split_mask is None:
logits = self.head(x)
else:
bs, n_images = images_split_mask.shape[:2]
n_embed = x.shape[-1]
images_embed = torch.masked_select(
x.unsqueeze(1), images_split_mask.unsqueeze(-1)
)
images_embed = images_embed.view((bs * n_images, -1, n_embed))
logits = self.head(images_embed)
return logits
class GlobalResponseNorm(nn.Module):
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105
def __init__(self, dim):
super().__init__()
self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6)
return torch.addcmul(self.bias, (self.weight * nx + 1), x, value=1)
class Downsample2D(nn.Module):
"""A 2D downsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
padding (`int`, default `1`):
padding for the convolution.
name (`str`, default `conv`):
name of the downsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
out_channels: Optional[int] = None,
padding: int = 1,
name: str = "conv",
kernel_size=3,
stride=2,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.padding = padding
self.name = name
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
if use_conv:
conv = nn.Conv2d(
self.channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
else:
assert self.channels == self.out_channels
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.Conv2d_0 = conv
self.conv = conv
elif name == "Conv2d_0":
self.conv = conv
else:
self.conv = conv
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(
0, 3, 1, 2
)
if self.use_conv and self.padding == 0:
pad = (0, 1, 0, 1)
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
assert hidden_states.shape[1] == self.channels
hidden_states = self.conv(hidden_states)
return hidden_states
class Upsample2D(nn.Module):
"""A 2D upsampling layer with an optional convolution.
Parameters:
channels (`int`):
number of channels in the inputs and outputs.
use_conv (`bool`, default `False`):
option to use a convolution.
use_conv_transpose (`bool`, default `False`):
option to use a convolution transpose.
out_channels (`int`, optional):
number of output channels. Defaults to `channels`.
name (`str`, default `conv`):
name of the upsampling 2D layer.
"""
def __init__(
self,
channels: int,
use_conv: bool = False,
use_conv_transpose: bool = False,
out_channels: Optional[int] = None,
name: str = "conv",
kernel_size: Optional[int] = None,
padding=1,
stride=2,
norm_type=None,
eps=None,
elementwise_affine=None,
bias=True,
interpolate=True,
):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_conv_transpose = use_conv_transpose
self.name = name
self.interpolate = interpolate
self.stride = stride
if norm_type == "ln_norm":
self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
elif norm_type == "rms_norm":
self.norm = RMSNorm(channels, eps)
elif norm_type is None:
self.norm = None
else:
raise ValueError(f"unknown norm_type: {norm_type}")
conv = None
if use_conv_transpose:
if kernel_size is None:
kernel_size = 4
conv = nn.ConvTranspose2d(
channels,
self.out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias,
)
elif use_conv:
if kernel_size is None:
kernel_size = 3
conv = nn.Conv2d(
self.channels,
self.out_channels,
kernel_size=kernel_size,
padding=padding,
bias=bias,
)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if name == "conv":
self.conv = conv
else:
self.Conv2d_0 = conv
def forward(
self,
hidden_states: torch.Tensor,
output_size: Optional[int] = None,
*args,
**kwargs,
) -> torch.Tensor:
assert hidden_states.shape[1] == self.channels
if self.norm is not None:
hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(
0, 3, 1, 2
)
if self.use_conv_transpose:
return self.conv(hidden_states)
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
# https://github.com/pytorch/pytorch/issues/86679
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# if `output_size` is passed we force the interpolation output
# size and do not make use of `scale_factor=2`
if self.interpolate:
if output_size is None:
hidden_states = F.interpolate(
hidden_states, scale_factor=self.stride, mode="nearest"
)
else:
hidden_states = F.interpolate(
hidden_states, size=output_size, mode="nearest"
)
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
if self.use_conv:
if self.name == "conv":
hidden_states = self.conv(hidden_states)
else:
hidden_states = self.Conv2d_0(hidden_states)
return hidden_states
class ConvNextBlock(nn.Module):
def __init__(
self,
channels,
norm_eps,
elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
res_ffn_factor: int = 4,
):
super().__init__()
self.depthwise = nn.Conv2d(
channels,
channels,
kernel_size=7,
padding=3,
groups=channels,
bias=use_bias,
)
self.norm = RMSNorm(channels, norm_eps)
self.channelwise_linear_1 = nn.Linear(
channels, int(channels * res_ffn_factor), bias=use_bias
)
self.channelwise_act = nn.GELU()
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
self.channelwise_linear_2 = nn.Linear(
int(channels * res_ffn_factor), channels, bias=use_bias
)
self.channelwise_dropout = nn.Dropout(hidden_dropout)
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
def forward(self, x, cond_embeds):
x_res = x
x = self.depthwise(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.channelwise_linear_1(x)
x = self.channelwise_act(x)
x = self.channelwise_norm(x)
x = self.channelwise_linear_2(x)
x = self.channelwise_dropout(x)
x = x.permute(0, 3, 1, 2)
x = x + x_res
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
# x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
x = torch.addcmul(
shift[:, :, None, None], x, (1 + scale)[:, :, None, None], value=1
)
return x
class Patchify(nn.Module):
def __init__(
self,
in_channels,
block_out_channels,
patch_size,
bias,
elementwise_affine,
eps,
kernel_size=None,
):
super().__init__()
if kernel_size is None:
kernel_size = patch_size
self.patch_conv = nn.Conv2d(
in_channels,
block_out_channels,
kernel_size=kernel_size,
stride=patch_size,
bias=bias,
)
self.norm = RMSNorm(block_out_channels, eps)
def forward(self, x):
embeddings = self.patch_conv(x)
embeddings = embeddings.permute(0, 2, 3, 1)
embeddings = self.norm(embeddings)
embeddings = embeddings.permute(0, 3, 1, 2)
return embeddings
class Unpatchify(nn.Module):
def __init__(
self, in_channels, out_channels, patch_size, bias, elementwise_affine, eps
):
super().__init__()
self.norm = RMSNorm(in_channels, eps)
self.unpatch_conv = nn.Conv2d(
in_channels,
out_channels * patch_size * patch_size,
kernel_size=1,
bias=bias,
)
self.pixel_shuffle = nn.PixelShuffle(patch_size)
self.patch_size = patch_size
def forward(self, x):
# [b, c, h, w]
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = x.permute(0, 3, 1, 2)
x = self.unpatch_conv(x)
x = self.pixel_shuffle(x)
return x
class UVitBlock(nn.Module):
def __init__(
self,
channels,
out_channels,
num_res_blocks,
stride,
hidden_size,
hidden_dropout,
elementwise_affine,
norm_eps,
use_bias,
downsample: bool,
upsample: bool,
res_ffn_factor: int = 4,
seq_len=None,
concat_input=False,
original_input_channels=None,
use_zero=True,
norm_type="RMS",
):
super().__init__()
self.res_blocks = nn.ModuleList()
for i in range(num_res_blocks):
conv_block = ConvNextBlock(
channels,
norm_eps,
elementwise_affine,
use_bias,
hidden_dropout,
hidden_size,
res_ffn_factor=res_ffn_factor,
)
self.res_blocks.append(conv_block)
if downsample:
self.downsample = Downsample2D(
channels=channels,
out_channels=out_channels,
use_conv=True,
name="Conv2d_0",
kernel_size=3,
padding=1,
stride=stride,
norm_type="rms_norm",
eps=norm_eps,
elementwise_affine=elementwise_affine,
bias=use_bias,
)
else:
self.downsample = None
if upsample:
self.upsample = Upsample2D(
channels=channels,
out_channels=out_channels,
use_conv_transpose=False,
use_conv=True,
kernel_size=3,
padding=1,
stride=stride,
name="conv",
norm_type="rms_norm",
eps=norm_eps,
elementwise_affine=elementwise_affine,
bias=use_bias,
interpolate=True,
)
else:
self.upsample = None
def forward(self, x, emb, recompute=False):
for res_block in self.res_blocks:
x = res_block(x, emb)
if self.downsample is not None:
x = self.downsample(x)
if self.upsample is not None:
x = self.upsample(x)
return x
class ShallowUViTEncoder(nn.Module):
def __init__(
self,
input_channels=3,
stride=4,
kernel_size=7,
padding=None,
block_out_channels=(768,),
layers_in_middle=2,
hidden_size=2048,
elementwise_affine=True,
use_bias=True,
norm_eps=1e-6,
dropout=0.0,
use_mid_block=True,
**kwargs,
):
super().__init__()
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos=True, downscale_freq_shift=0
)
self.time_embed = TimestepEmbedding(
block_out_channels[0], hidden_size, sample_proj_bias=use_bias
)
if padding is None:
padding = math.ceil(kernel_size - stride)
self.in_conv = nn.Conv2d(
in_channels=input_channels,
out_channels=block_out_channels[0],
kernel_size=kernel_size,
stride=stride,
padding=padding,
)
if use_mid_block:
self.mid_block = UVitBlock(
block_out_channels[-1],
block_out_channels[-1],
num_res_blocks=layers_in_middle,
hidden_size=hidden_size,
hidden_dropout=dropout,
elementwise_affine=elementwise_affine,
norm_eps=norm_eps,
use_bias=use_bias,
downsample=False,
upsample=False,
stride=1,
res_ffn_factor=4,
)
else:
self.mid_block = None
def get_num_extra_tensors(self):
return 2
def forward(self, x, timesteps):
bs = x.shape[0]
dtype = x.dtype
t_emb = self.time_proj(timesteps.flatten()).view(bs, -1).to(dtype)
t_emb = self.time_embed(t_emb)
x_emb = self.in_conv(x)
if self.mid_block is not None:
x_emb = self.mid_block(x_emb, t_emb)
hs = [x_emb]
return x_emb, t_emb, hs
class ShallowUViTDecoder(nn.Module):
def __init__(
self,
in_channels=768,
out_channels=3,
block_out_channels: Tuple[int] = (768,),
upsamples=2,
layers_in_middle=2,
hidden_size=2048,
elementwise_affine=True,
norm_eps=1e-6,
use_bias=True,
dropout=0.0,
use_mid_block=True,
**kwargs,
):
super().__init__()
if use_mid_block:
self.mid_block = UVitBlock(
in_channels + block_out_channels[-1],
block_out_channels[
-1
], # In fact, the parameter is not used because it has no effect when both downsample and upsample are set to false.
num_res_blocks=layers_in_middle,
hidden_size=hidden_size,
hidden_dropout=dropout,
elementwise_affine=elementwise_affine,
norm_eps=norm_eps,
use_bias=use_bias,
downsample=False,
upsample=False,
stride=1,
res_ffn_factor=4,
)
else:
self.mid_block = None
self.out_convs = nn.ModuleList()
for rank in range(upsamples):
if rank == upsamples - 1:
curr_out_channels = out_channels
else:
curr_out_channels = block_out_channels[-1]
if rank == 0:
curr_in_channels = block_out_channels[-1] + in_channels
else:
curr_in_channels = block_out_channels[-1]
self.out_convs.append(
Unpatchify(
curr_in_channels,
curr_out_channels,
patch_size=2,
bias=use_bias,
elementwise_affine=elementwise_affine,
eps=norm_eps,
)
)
self.input_norm = RMSNorm(in_channels, norm_eps)
def forward(self, x, hs, t_emb):
x = x.permute(0, 2, 3, 1)
x = self.input_norm(x)
x = x.permute(0, 3, 1, 2)
x = torch.cat([x, hs.pop()], dim=1)
if self.mid_block is not None:
x = self.mid_block(x, t_emb)
for out_conv in self.out_convs:
x = out_conv(x)
assert len(hs) == 0
return x