DeepSeek LLM

Homepage Hugging Face
Code License Model License

📥 Model Download | ⚡ Quick Start | 📜 License | 📖 Citation
📄 Paper Link | 🤗 Online Demo

## 1. Introduction Janus is a novel autoregressive framework that unifies multimodal understanding and generation. It addresses the limitations of previous approaches by decoupling visual encoding into separate pathways, while still utilizing a single, unified transformer architecture for processing. The decoupling not only alleviates the conflict between the visual encoder’s roles in understanding and generation, but also enhances the framework’s flexibility. Janus surpasses previous unified model and matches or exceeds the performance of task-specific models. The simplicity, high flexibility, and effectiveness of Janus make it a strong candidate for next-generation unified multimodal models.
image
## 2. News **2024.10.20**: (1) Fix a bug in [tokenizer_config.json](https://huggingface.co/deepseek-ai/Janus-1.3B/blob/main/tokenizer_config.json). The previous version caused classifier-free guidance to not function properly, resulting in relatively poor visual generation quality. (2) Release Gradio demo ([online demo](https://huggingface.co/spaces/deepseek-ai/Janus-1.3B) and [local](#gradio-demo)). ## 3. Model Download We release Janus to the public to support a broader and more diverse range of research within both academic and commercial communities. Please note that the use of this model is subject to the terms outlined in [License section](#5-license). Commercial usage is permitted under these terms. ### Huggingface | Model | Sequence Length | Download | |-----------------------|-----------------|-----------------------------------------------------------------------------| | Janus-1.3B | 4096 | [🤗 Hugging Face](https://huggingface.co/deepseek-ai/Janus-1.3B) | ## 4. Quick Start ### Installation On the basis of `Python >= 3.8` environment, install the necessary dependencies by running the following command: ```shell pip install -e . ``` ### Simple Inference Example #### Multimodal Understanding ```python import torch from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor from janus.utils.io import load_pil_images # specify the path to the model model_path = "deepseek-ai/Janus-1.3B" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() conversation = [ { "role": "User", "content": "\nConvert the formula into latex code.", "images": ["images/equation.png"], }, {"role": "Assistant", "content": ""}, ] # load images and prepare for inputs pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(vl_gpt.device) # # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # # run the model to get the response outputs = vl_gpt.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=512, do_sample=False, use_cache=True, ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) print(f"{prepare_inputs['sft_format'][0]}", answer) ``` #### Text-to-Image Generation ```python import os import PIL.Image import torch import numpy as np from transformers import AutoModelForCausalLM from janus.models import MultiModalityCausalLM, VLChatProcessor # specify the path to the model model_path = "deepseek-ai/Janus-1.3B" vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True ) vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() conversation = [ { "role": "User", "content": "A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair", }, {"role": "Assistant", "content": ""}, ] sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( conversations=conversation, sft_format=vl_chat_processor.sft_format, system_prompt="", ) prompt = sft_format + vl_chat_processor.image_start_tag @torch.inference_mode() def generate( mmgpt: MultiModalityCausalLM, vl_chat_processor: VLChatProcessor, prompt: str, temperature: float = 1, parallel_size: int = 16, cfg_weight: float = 5, image_token_num_per_image: int = 576, img_size: int = 384, patch_size: int = 16, ): input_ids = vl_chat_processor.tokenizer.encode(prompt) input_ids = torch.LongTensor(input_ids) tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() for i in range(parallel_size*2): tokens[i, :] = input_ids if i % 2 != 0: tokens[i, 1:-1] = vl_chat_processor.pad_id inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() for i in range(image_token_num_per_image): outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) hidden_states = outputs.last_hidden_state logits = mmgpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = mmgpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) visual_img[:, :, :] = dec os.makedirs('generated_samples', exist_ok=True) for i in range(parallel_size): save_path = os.path.join('generated_samples', "img_{}.jpg".format(i)) PIL.Image.fromarray(visual_img[i]).save(save_path) generate( vl_gpt, vl_chat_processor, prompt, ) ``` ### Gradio Demo We have deployed online demo in [Huggingface](https://huggingface.co/spaces/deepseek-ai/Janus-1.3B). For the local gradio demo, you can run with the following command: ``` pip install -e .[gradio] python demo/app.py ``` Have Fun! ### FastAPI Demo It's easy to run a FastAPI server to host an API server running the same functions as gradio. To start FastAPI server, run the following command: ``` python demo/fastapi_app.py ``` To test the server, you can open another terminal and run: ``` python demo/fastapi_client.py ``` ## 5. License This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of Janus models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL). ## 6. Citation ``` @misc{wu2024janus, title={Janus: Decoupling Visual Encoding for Unified Multimodal Understanding and Generation}, author={Chengyue Wu and Xiaokang Chen and Zhiyu Wu and Yiyang Ma and Xingchao Liu and Zizheng Pan and Wen Liu and Zhenda Xie and Xingkai Yu and Chong Ruan and Ping Luo}, year={2024}, eprint={2410.13848}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2410.13848}, } ``` ## 7. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).