# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from dataclasses import dataclass from typing import Dict, List import torch from PIL.Image import Image from transformers import LlamaTokenizerFast from transformers.processing_utils import ProcessorMixin from janus.models.image_processing_vlm import VLMImageProcessor from janus.utils.conversation import get_conv_template class DictOutput(object): def keys(self): return self.__dict__.keys() def __getitem__(self, item): return self.__dict__[item] def __setitem__(self, key, value): self.__dict__[key] = value @dataclass class VLChatProcessorOutput(DictOutput): sft_format: str input_ids: torch.Tensor pixel_values: torch.Tensor num_image_tokens: torch.IntTensor def __len__(self): return len(self.input_ids) @dataclass class BatchedVLChatProcessorOutput(DictOutput): sft_format: List[str] input_ids: torch.Tensor pixel_values: torch.Tensor attention_mask: torch.Tensor images_seq_mask: torch.BoolTensor images_emb_mask: torch.BoolTensor def to(self, device, dtype=torch.bfloat16): self.input_ids = self.input_ids.to(device) self.attention_mask = self.attention_mask.to(device) self.images_seq_mask = self.images_seq_mask.to(device) self.images_emb_mask = self.images_emb_mask.to(device) self.pixel_values = self.pixel_values.to(device=device, dtype=dtype) return self class VLChatProcessor(ProcessorMixin): image_processor_class = "AutoImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") attributes = ["image_processor", "tokenizer"] system_prompt = ( "You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language." ) def __init__( self, image_processor: VLMImageProcessor, tokenizer: LlamaTokenizerFast, image_tag: str = "", image_start_tag: str = "", image_end_tag: str = "", num_image_tokens: int = 576, add_special_token: bool = False, sft_format: str = "deepseek", mask_prompt: bool = True, ignore_id: int = -100, **kwargs, ): self.image_processor = image_processor self.tokenizer = tokenizer image_id = self.tokenizer.vocab.get(image_tag) if image_id is None: special_tokens = [image_tag] special_tokens_dict = {"additional_special_tokens": special_tokens} self.tokenizer.add_special_tokens(special_tokens_dict) print(f"Add image tag = {image_tag} to the tokenizer") self.image_tag = image_tag self.image_start_tag = image_start_tag self.image_end_tag = image_end_tag self.num_image_tokens = num_image_tokens self.add_special_token = add_special_token self.sft_format = sft_format self.mask_prompt = mask_prompt self.ignore_id = ignore_id super().__init__( image_processor, tokenizer, image_tag, num_image_tokens, add_special_token, sft_format, mask_prompt, ignore_id, **kwargs, ) def new_chat_template(self): conv = get_conv_template(self.sft_format) conv.set_system_message(self.system_prompt) return conv def apply_sft_template_for_multi_turn_prompts( self, conversations: List[Dict[str, str]], sft_format: str = "deepseek", system_prompt: str = "", ): """ Applies the SFT template to conversation. An example of conversation: conversation = [ { "role": "User", "content": " is Figure 1.\n is Figure 2.\nWhich image is brighter?", "images": [ "./multi-images/attribute_comparison_1.png", "./multi-images/attribute_comparison_2.png" ] }, { "role": "Assistant", "content": "" } ] Args: conversations (List[Dict]): A conversation with a List of Dict[str, str] text. sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek". system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "". Returns: sft_prompt (str): The formatted text. """ conv = get_conv_template(sft_format) conv.set_system_message(system_prompt) for message in conversations: conv.append_message(message["role"], message["content"].strip()) sft_prompt = conv.get_prompt().strip() return sft_prompt @property def image_token(self): return self.image_tag @property def image_id(self): image_id = self.tokenizer.vocab.get(self.image_tag) return image_id @property def image_start_id(self): image_start_id = self.tokenizer.vocab.get(self.image_start_tag) return image_start_id @property def image_end_id(self): image_end_id = self.tokenizer.vocab.get(self.image_end_tag) return image_end_id @property def image_start_token(self): return self.image_start_tag @property def image_end_token(self): return self.image_end_tag @property def pad_id(self): pad_id = self.tokenizer.pad_token_id if pad_id is None: pad_id = self.tokenizer.eos_token_id return pad_id def add_image_token( self, image_indices: List[int], input_ids: torch.LongTensor, ): """ Args: image_indices (List[int]): [index_0, index_1, ..., index_j] input_ids (torch.LongTensor): [N] Returns: input_ids (torch.LongTensor): [N + image tokens] num_image_tokens (torch.IntTensor): [n_images] """ input_slices = [] start = 0 for index in image_indices: if self.add_special_token: end = index + 1 else: end = index # original text tokens input_slices.append(input_ids[start:end]) # add boi, image tokens, eoi and set the mask as False input_slices.append(self.image_start_id * torch.ones((1), dtype=torch.long)) input_slices.append( self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long) ) input_slices.append(self.image_end_id * torch.ones((1), dtype=torch.long)) start = index + 1 # the left part input_slices.append(input_ids[start:]) # concat all slices input_ids = torch.cat(input_slices, dim=0) num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices)) return input_ids, num_image_tokens def process_one( self, prompt: str = None, conversations: List[Dict[str, str]] = None, images: List[Image] = None, **kwargs, ): """ Args: prompt (str): the formatted prompt; conversations (List[Dict]): conversations with a list of messages; images (List[ImageType]): the list of images; **kwargs: Returns: outputs (BaseProcessorOutput): the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - target_ids (torch.LongTensor): [N + image tokens] - images (torch.FloatTensor): [n_images, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (List[int]): the number of image tokens """ assert ( prompt is None or conversations is None ), "prompt and conversations cannot be used at the same time." if prompt is None: # apply sft format sft_format = self.apply_sft_template_for_multi_turn_prompts( conversations=conversations, sft_format=self.sft_format, system_prompt=self.system_prompt, ) else: sft_format = prompt # tokenize input_ids = self.tokenizer.encode(sft_format) input_ids = torch.LongTensor(input_ids) # add image tokens to the input_ids image_token_mask: torch.BoolTensor = input_ids == self.image_id image_indices = image_token_mask.nonzero() input_ids, num_image_tokens = self.add_image_token( image_indices=image_indices, input_ids=input_ids, ) # load images images_outputs = self.image_processor(images, return_tensors="pt") prepare = VLChatProcessorOutput( sft_format=sft_format, input_ids=input_ids, pixel_values=images_outputs.pixel_values, num_image_tokens=num_image_tokens, ) return prepare def __call__( self, *, prompt: str = None, conversations: List[Dict[str, str]] = None, images: List[Image] = None, force_batchify: bool = True, **kwargs, ): """ Args: prompt (str): the formatted prompt; conversations (List[Dict]): conversations with a list of messages; images (List[ImageType]): the list of images; force_batchify (bool): force batchify the inputs; **kwargs: Returns: outputs (BaseProcessorOutput): the output of the processor, - input_ids (torch.LongTensor): [N + image tokens] - images (torch.FloatTensor): [n_images, 3, H, W] - image_id (int): the id of the image token - num_image_tokens (List[int]): the number of image tokens """ prepare = self.process_one( prompt=prompt, conversations=conversations, images=images ) if force_batchify: prepare = self.batchify([prepare]) return prepare def batchify( self, prepare_list: List[VLChatProcessorOutput] ) -> BatchedVLChatProcessorOutput: """ Preprocesses the inputs for multimodal inference. Args: prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput. Returns: BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference. """ batch_size = len(prepare_list) sft_format = [] n_images = [] seq_lens = [] for prepare in prepare_list: n_images.append(len(prepare.num_image_tokens)) seq_lens.append(len(prepare)) input_token_max_len = max(seq_lens) max_n_images = max(1, max(n_images)) batched_input_ids = torch.full( (batch_size, input_token_max_len), self.pad_id ).long() # FIXME batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long() batched_pixel_values = torch.zeros( (batch_size, max_n_images, *self.image_processor.default_shape) ).float() batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool() batched_images_emb_mask = torch.zeros( (batch_size, max_n_images, self.num_image_tokens) ).bool() for i, prepare in enumerate(prepare_list): input_ids = prepare.input_ids seq_len = len(prepare) n_image = len(prepare.num_image_tokens) # left-padding batched_attention_mask[i, -seq_len:] = 1 batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids) batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id if n_image > 0: batched_pixel_values[i, :n_image] = prepare.pixel_values for j, n_image_tokens in enumerate(prepare.num_image_tokens): batched_images_emb_mask[i, j, :n_image_tokens] = True sft_format.append(prepare.sft_format) batched_prepares = BatchedVLChatProcessorOutput( input_ids=batched_input_ids, attention_mask=batched_attention_mask, pixel_values=batched_pixel_values, images_seq_mask=batched_images_seq_mask, images_emb_mask=batched_images_emb_mask, sft_format=sft_format, ) return batched_prepares