# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from dataclasses import dataclass, field from typing import List import torch import torch.nn as nn import torch.nn.functional as F from functools import partial @dataclass class ModelArgs: codebook_size: int = 16384 codebook_embed_dim: int = 8 codebook_l2_norm: bool = True codebook_show_usage: bool = True commit_loss_beta: float = 0.25 entropy_loss_ratio: float = 0.0 encoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) decoder_ch_mult: List[int] = field(default_factory=lambda: [1, 1, 2, 2, 4]) z_channels: int = 256 dropout_p: float = 0.0 class Encoder(nn.Module): def __init__( self, in_channels=3, ch=128, ch_mult=(1, 1, 2, 2, 4), num_res_blocks=2, norm_type="group", dropout=0.0, resamp_with_conv=True, z_channels=256, ): super().__init__() self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.conv_in = nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1) # downsampling in_ch_mult = (1,) + tuple(ch_mult) self.conv_blocks = nn.ModuleList() for i_level in range(self.num_resolutions): conv_block = nn.Module() # res & attn res_block = nn.ModuleList() attn_block = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for _ in range(self.num_res_blocks): res_block.append( ResnetBlock( block_in, block_out, dropout=dropout, norm_type=norm_type ) ) block_in = block_out if i_level == self.num_resolutions - 1: attn_block.append(AttnBlock(block_in, norm_type)) conv_block.res = res_block conv_block.attn = attn_block # downsample if i_level != self.num_resolutions - 1: conv_block.downsample = Downsample(block_in, resamp_with_conv) self.conv_blocks.append(conv_block) # middle self.mid = nn.ModuleList() self.mid.append( ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) ) self.mid.append(AttnBlock(block_in, norm_type=norm_type)) self.mid.append( ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) ) # end self.norm_out = Normalize(block_in, norm_type) self.conv_out = nn.Conv2d( block_in, z_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): h = self.conv_in(x) # downsampling for i_level, block in enumerate(self.conv_blocks): for i_block in range(self.num_res_blocks): h = block.res[i_block](h) if len(block.attn) > 0: h = block.attn[i_block](h) if i_level != self.num_resolutions - 1: h = block.downsample(h) # middle for mid_block in self.mid: h = mid_block(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, z_channels=256, ch=128, ch_mult=(1, 1, 2, 2, 4), num_res_blocks=2, norm_type="group", dropout=0.0, resamp_with_conv=True, out_channels=3, ): super().__init__() self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks block_in = ch * ch_mult[self.num_resolutions - 1] # z to block_in self.conv_in = nn.Conv2d( z_channels, block_in, kernel_size=3, stride=1, padding=1 ) # middle self.mid = nn.ModuleList() self.mid.append( ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) ) self.mid.append(AttnBlock(block_in, norm_type=norm_type)) self.mid.append( ResnetBlock(block_in, block_in, dropout=dropout, norm_type=norm_type) ) # upsampling self.conv_blocks = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): conv_block = nn.Module() # res & attn res_block = nn.ModuleList() attn_block = nn.ModuleList() block_out = ch * ch_mult[i_level] for _ in range(self.num_res_blocks + 1): res_block.append( ResnetBlock( block_in, block_out, dropout=dropout, norm_type=norm_type ) ) block_in = block_out if i_level == self.num_resolutions - 1: attn_block.append(AttnBlock(block_in, norm_type)) conv_block.res = res_block conv_block.attn = attn_block # downsample if i_level != 0: conv_block.upsample = Upsample(block_in, resamp_with_conv) self.conv_blocks.append(conv_block) # end self.norm_out = Normalize(block_in, norm_type) self.conv_out = nn.Conv2d( block_in, out_channels, kernel_size=3, stride=1, padding=1 ) @property def last_layer(self): return self.conv_out.weight def forward(self, z): # z to block_in h = self.conv_in(z) # middle for mid_block in self.mid: h = mid_block(h) # upsampling for i_level, block in enumerate(self.conv_blocks): for i_block in range(self.num_res_blocks + 1): h = block.res[i_block](h) if len(block.attn) > 0: h = block.attn[i_block](h) if i_level != self.num_resolutions - 1: h = block.upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class VectorQuantizer(nn.Module): def __init__(self, n_e, e_dim, beta, entropy_loss_ratio, l2_norm, show_usage): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.entropy_loss_ratio = entropy_loss_ratio self.l2_norm = l2_norm self.show_usage = show_usage self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) if self.l2_norm: self.embedding.weight.data = F.normalize( self.embedding.weight.data, p=2, dim=-1 ) if self.show_usage: self.register_buffer("codebook_used", nn.Parameter(torch.zeros(65536))) def forward(self, z): # reshape z -> (batch, height, width, channel) and flatten z = torch.einsum("b c h w -> b h w c", z).contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z if self.l2_norm: z = F.normalize(z, p=2, dim=-1) z_flattened = F.normalize(z_flattened, p=2, dim=-1) embedding = F.normalize(self.embedding.weight, p=2, dim=-1) else: embedding = self.embedding.weight d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(embedding**2, dim=1) - 2 * torch.einsum( "bd,dn->bn", z_flattened, torch.einsum("n d -> d n", embedding) ) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = embedding[min_encoding_indices].view(z.shape) perplexity = None min_encodings = None vq_loss = None commit_loss = None entropy_loss = None # compute loss for embedding if self.training: vq_loss = torch.mean((z_q - z.detach()) ** 2) commit_loss = self.beta * torch.mean((z_q.detach() - z) ** 2) entropy_loss = self.entropy_loss_ratio * compute_entropy_loss(-d) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = torch.einsum("b h w c -> b c h w", z_q) return ( z_q, (vq_loss, commit_loss, entropy_loss), (perplexity, min_encodings, min_encoding_indices), ) def get_codebook_entry(self, indices, shape=None, channel_first=True): # shape = (batch, channel, height, width) if channel_first else (batch, height, width, channel) if self.l2_norm: embedding = F.normalize(self.embedding.weight, p=2, dim=-1) else: embedding = self.embedding.weight z_q = embedding[indices] # (b*h*w, c) if shape is not None: if channel_first: z_q = z_q.reshape(shape[0], shape[2], shape[3], shape[1]) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() else: z_q = z_q.view(shape) return z_q class ResnetBlock(nn.Module): def __init__( self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, norm_type="group", ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels, norm_type) self.conv1 = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.norm2 = Normalize(out_channels, norm_type) self.dropout = nn.Dropout(dropout) self.conv2 = nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels, norm_type="group"): super().__init__() self.norm = Normalize(in_channels, norm_type) self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels, norm_type="group"): assert norm_type in ["group", "batch"] if norm_type == "group": return nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) elif norm_type == "batch": return nn.SyncBatchNorm(in_channels) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): if x.dtype != torch.float32: x = F.interpolate(x.to(torch.float), scale_factor=2.0, mode="nearest").to( torch.bfloat16 ) else: x = F.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = F.avg_pool2d(x, kernel_size=2, stride=2) return x def compute_entropy_loss(affinity, loss_type="softmax", temperature=0.01): flat_affinity = affinity.reshape(-1, affinity.shape[-1]) flat_affinity /= temperature probs = F.softmax(flat_affinity, dim=-1) log_probs = F.log_softmax(flat_affinity + 1e-5, dim=-1) if loss_type == "softmax": target_probs = probs else: raise ValueError("Entropy loss {} not supported".format(loss_type)) avg_probs = torch.mean(target_probs, dim=0) avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + 1e-5)) sample_entropy = -torch.mean(torch.sum(target_probs * log_probs, dim=-1)) loss = sample_entropy - avg_entropy return loss class VQModel(nn.Module): def __init__(self, config: ModelArgs): super().__init__() self.config = config self.encoder = Encoder( ch_mult=config.encoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p, ) self.decoder = Decoder( ch_mult=config.decoder_ch_mult, z_channels=config.z_channels, dropout=config.dropout_p, ) self.quantize = VectorQuantizer( config.codebook_size, config.codebook_embed_dim, config.commit_loss_beta, config.entropy_loss_ratio, config.codebook_l2_norm, config.codebook_show_usage, ) self.quant_conv = nn.Conv2d(config.z_channels, config.codebook_embed_dim, 1) self.post_quant_conv = nn.Conv2d( config.codebook_embed_dim, config.z_channels, 1 ) def encode(self, x): h = self.encoder(x) h = self.quant_conv(h) quant, emb_loss, info = self.quantize(h) return quant, emb_loss, info def decode(self, quant): quant = self.post_quant_conv(quant) dec = self.decoder(quant) return dec def decode_code(self, code_b, shape=None, channel_first=True): quant_b = self.quantize.get_codebook_entry(code_b, shape, channel_first) dec = self.decode(quant_b) return dec def forward(self, input): quant, diff, _ = self.encode(input) dec = self.decode(quant) return dec, diff ################################################################################# # VQ Model Configs # ################################################################################# def VQ_16(**kwargs): return VQModel( ModelArgs( encoder_ch_mult=[1, 1, 2, 2, 4], decoder_ch_mult=[1, 1, 2, 2, 4], **kwargs ) ) VQ_models = {"VQ-16": VQ_16}