# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import torch from attrdict import AttrDict from einops import rearrange from transformers import ( AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM, PreTrainedModel, ) from transformers.configuration_utils import PretrainedConfig from janus.models.clip_encoder import CLIPVisionTower from janus.models.projector import MlpProjector class vision_head(torch.nn.Module): def __init__(self, params): super().__init__() self.output_mlp_projector = torch.nn.Linear( params.n_embed, params.image_token_embed ) self.vision_activation = torch.nn.GELU() self.vision_head = torch.nn.Linear( params.image_token_embed, params.image_token_size ) def forward(self, x): x = self.output_mlp_projector(x) x = self.vision_activation(x) x = self.vision_head(x) return x def model_name_to_cls(cls_name): if "MlpProjector" in cls_name: cls = MlpProjector elif "CLIPVisionTower" in cls_name: cls = CLIPVisionTower elif "VQ" in cls_name: from janus.models.vq_model import VQ_models cls = VQ_models[cls_name] elif "vision_head" in cls_name: cls = vision_head else: raise ValueError(f"class_name {cls_name} is invalid.") return cls class VisionConfig(PretrainedConfig): model_type = "vision" cls: str = "" params: AttrDict = {} def __init__(self, **kwargs): super().__init__(**kwargs) self.cls = kwargs.get("cls", "") if not isinstance(self.cls, str): self.cls = self.cls.__name__ self.params = AttrDict(kwargs.get("params", {})) class AlignerConfig(PretrainedConfig): model_type = "aligner" cls: str = "" params: AttrDict = {} def __init__(self, **kwargs): super().__init__(**kwargs) self.cls = kwargs.get("cls", "") if not isinstance(self.cls, str): self.cls = self.cls.__name__ self.params = AttrDict(kwargs.get("params", {})) class GenVisionConfig(PretrainedConfig): model_type = "gen_vision" cls: str = "" params: AttrDict = {} def __init__(self, **kwargs): super().__init__(**kwargs) self.cls = kwargs.get("cls", "") if not isinstance(self.cls, str): self.cls = self.cls.__name__ self.params = AttrDict(kwargs.get("params", {})) class GenAlignerConfig(PretrainedConfig): model_type = "gen_aligner" cls: str = "" params: AttrDict = {} def __init__(self, **kwargs): super().__init__(**kwargs) self.cls = kwargs.get("cls", "") if not isinstance(self.cls, str): self.cls = self.cls.__name__ self.params = AttrDict(kwargs.get("params", {})) class GenHeadConfig(PretrainedConfig): model_type = "gen_head" cls: str = "" params: AttrDict = {} def __init__(self, **kwargs): super().__init__(**kwargs) self.cls = kwargs.get("cls", "") if not isinstance(self.cls, str): self.cls = self.cls.__name__ self.params = AttrDict(kwargs.get("params", {})) class MultiModalityConfig(PretrainedConfig): model_type = "multi_modality" vision_config: VisionConfig aligner_config: AlignerConfig gen_vision_config: GenVisionConfig gen_aligner_config: GenAlignerConfig gen_head_config: GenHeadConfig language_config: LlamaConfig def __init__(self, **kwargs): super().__init__(**kwargs) vision_config = kwargs.get("vision_config", {}) self.vision_config = VisionConfig(**vision_config) aligner_config = kwargs.get("aligner_config", {}) self.aligner_config = AlignerConfig(**aligner_config) gen_vision_config = kwargs.get("gen_vision_config", {}) self.gen_vision_config = GenVisionConfig(**gen_vision_config) gen_aligner_config = kwargs.get("gen_aligner_config", {}) self.gen_aligner_config = GenAlignerConfig(**gen_aligner_config) gen_head_config = kwargs.get("gen_head_config", {}) self.gen_head_config = GenHeadConfig(**gen_head_config) language_config = kwargs.get("language_config", {}) if isinstance(language_config, LlamaConfig): self.language_config = language_config else: self.language_config = LlamaConfig(**language_config) class MultiModalityPreTrainedModel(PreTrainedModel): config_class = MultiModalityConfig base_model_prefix = "multi_modality" _no_split_modules = [] _skip_keys_device_placement = "past_key_values" class MultiModalityCausalLM(MultiModalityPreTrainedModel): def __init__(self, config: MultiModalityConfig): super().__init__(config) vision_config = config.vision_config vision_cls = model_name_to_cls(vision_config.cls) self.vision_model = vision_cls(**vision_config.params) aligner_config = config.aligner_config aligner_cls = model_name_to_cls(aligner_config.cls) self.aligner = aligner_cls(aligner_config.params) gen_vision_config = config.gen_vision_config gen_vision_cls = model_name_to_cls(gen_vision_config.cls) self.gen_vision_model = gen_vision_cls() gen_aligner_config = config.gen_aligner_config gen_aligner_cls = model_name_to_cls(gen_aligner_config.cls) self.gen_aligner = gen_aligner_cls(gen_aligner_config.params) gen_head_config = config.gen_head_config gen_head_cls = model_name_to_cls(gen_head_config.cls) self.gen_head = gen_head_cls(gen_head_config.params) self.gen_embed = torch.nn.Embedding( gen_vision_config.params.image_token_size, gen_vision_config.params.n_embed ) language_config = config.language_config self.language_model = LlamaForCausalLM(language_config) def prepare_inputs_embeds( self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, images_seq_mask: torch.LongTensor, images_emb_mask: torch.LongTensor, **kwargs, ): """ Args: input_ids (torch.LongTensor): [b, T] pixel_values (torch.FloatTensor): [b, n_images, 3, h, w] images_seq_mask (torch.BoolTensor): [b, T] images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens] assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask) Returns: input_embeds (torch.Tensor): [b, T, D] """ bs, n = pixel_values.shape[0:2] images = rearrange(pixel_values, "b n c h w -> (b n) c h w") # [b x n, T2, D] images_embeds = self.aligner(self.vision_model(images)) # [b x n, T2, D] -> [b, n x T2, D] images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n) # [b, n, T2] -> [b, n x T2] images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)") # [b, T, D] input_ids[input_ids < 0] = 0 # ignore the image embeddings inputs_embeds = self.language_model.get_input_embeddings()(input_ids) # replace with the image embeddings inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask] return inputs_embeds def prepare_gen_img_embeds(self, image_ids: torch.LongTensor): return self.gen_aligner(self.gen_embed(image_ids)) AutoConfig.register("vision", VisionConfig) AutoConfig.register("aligner", AlignerConfig) AutoConfig.register("gen_vision", GenVisionConfig) AutoConfig.register("gen_aligner", GenAlignerConfig) AutoConfig.register("gen_head", GenHeadConfig) AutoConfig.register("multi_modality", MultiModalityConfig) AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)