mirror of
https://github.com/deepseek-ai/Janus
synced 2024-12-26 13:52:57 +00:00
Create interactivechat.py
This commit is contained in:
parent
0214867df2
commit
a4a40b6f53
150
interactivechat.py
Normal file
150
interactivechat.py
Normal file
@ -0,0 +1,150 @@
|
||||
import os
|
||||
import PIL.Image
|
||||
import torch
|
||||
import numpy as np
|
||||
from transformers import AutoModelForCausalLM
|
||||
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
||||
import time
|
||||
import re
|
||||
|
||||
# Specify the path to the model
|
||||
model_path = "deepseek-ai/Janus-1.3B"
|
||||
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
||||
tokenizer = vl_chat_processor.tokenizer
|
||||
|
||||
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, trust_remote_code=True
|
||||
)
|
||||
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
|
||||
|
||||
|
||||
def create_prompt(user_input: str) -> str:
|
||||
conversation = [
|
||||
{
|
||||
"role": "User",
|
||||
"content": user_input,
|
||||
},
|
||||
{"role": "Assistant", "content": ""},
|
||||
]
|
||||
|
||||
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
||||
conversations=conversation,
|
||||
sft_format=vl_chat_processor.sft_format,
|
||||
system_prompt="",
|
||||
)
|
||||
prompt = sft_format + vl_chat_processor.image_start_tag
|
||||
return prompt
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(
|
||||
mmgpt: MultiModalityCausalLM,
|
||||
vl_chat_processor: VLChatProcessor,
|
||||
prompt: str,
|
||||
short_prompt: str,
|
||||
parallel_size: int = 16,
|
||||
temperature: float = 1,
|
||||
cfg_weight: float = 5,
|
||||
image_token_num_per_image: int = 576,
|
||||
img_size: int = 384,
|
||||
patch_size: int = 16,
|
||||
):
|
||||
input_ids = vl_chat_processor.tokenizer.encode(prompt)
|
||||
input_ids = torch.LongTensor(input_ids)
|
||||
|
||||
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda()
|
||||
for i in range(parallel_size * 2):
|
||||
tokens[i, :] = input_ids
|
||||
if i % 2 != 0:
|
||||
tokens[i, 1:-1] = vl_chat_processor.pad_id
|
||||
|
||||
inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
|
||||
|
||||
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
|
||||
outputs = None # Initialize outputs for use in the loop
|
||||
|
||||
for i in range(image_token_num_per_image):
|
||||
outputs = mmgpt.language_model.model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=True,
|
||||
past_key_values=outputs.past_key_values if i != 0 else None
|
||||
)
|
||||
hidden_states = outputs.last_hidden_state
|
||||
|
||||
logits = mmgpt.gen_head(hidden_states[:, -1, :])
|
||||
logit_cond = logits[0::2, :]
|
||||
logit_uncond = logits[1::2, :]
|
||||
|
||||
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
||||
probs = torch.softmax(logits / temperature, dim=-1)
|
||||
|
||||
next_token = torch.multinomial(probs, num_samples=1)
|
||||
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
||||
|
||||
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
||||
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
|
||||
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
||||
|
||||
dec = mmgpt.gen_vision_model.decode_code(
|
||||
generated_tokens.to(dtype=torch.int),
|
||||
shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size]
|
||||
)
|
||||
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
||||
|
||||
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
||||
|
||||
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
|
||||
visual_img[:, :, :] = dec
|
||||
|
||||
os.makedirs('generated_samples', exist_ok=True)
|
||||
|
||||
# Create a timestamp
|
||||
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
||||
|
||||
# Sanitize the short_prompt to ensure it's safe for filenames
|
||||
short_prompt = re.sub(r'\W+', '_', short_prompt)[:50]
|
||||
|
||||
# Save images with timestamp and part of the user prompt in the filename
|
||||
for i in range(parallel_size):
|
||||
save_path = os.path.join('generated_samples', f"img_{timestamp}_{short_prompt}_{i}.jpg")
|
||||
PIL.Image.fromarray(visual_img[i]).save(save_path)
|
||||
|
||||
|
||||
def interactive_image_generator():
|
||||
print("Welcome to the interactive image generator!")
|
||||
|
||||
# Ask for the number of images at the start of the session
|
||||
while True:
|
||||
num_images_input = input("How many images would you like to generate per prompt? (Enter a positive integer): ")
|
||||
if num_images_input.isdigit() and int(num_images_input) > 0:
|
||||
parallel_size = int(num_images_input)
|
||||
break
|
||||
else:
|
||||
print("Invalid input. Please enter a positive integer.")
|
||||
|
||||
while True:
|
||||
user_input = input("Please describe the image you'd like to generate (or type 'exit' to quit): ")
|
||||
|
||||
if user_input.lower() == 'exit':
|
||||
print("Exiting the image generator. Goodbye!")
|
||||
break
|
||||
|
||||
prompt = create_prompt(user_input)
|
||||
|
||||
# Create a sanitized version of user_input for the filename
|
||||
short_prompt = re.sub(r'\W+', '_', user_input)[:50]
|
||||
|
||||
print(f"Generating {parallel_size} image(s) for: '{user_input}'")
|
||||
generate(
|
||||
mmgpt=vl_gpt,
|
||||
vl_chat_processor=vl_chat_processor,
|
||||
prompt=prompt,
|
||||
short_prompt=short_prompt,
|
||||
parallel_size=parallel_size # Pass the user-specified number of images
|
||||
)
|
||||
|
||||
print("Image generation complete! Check the 'generated_samples' folder for the output.\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
interactive_image_generator()
|
Loading…
Reference in New Issue
Block a user