mirror of
https://github.com/deepseek-ai/Janus
synced 2024-12-27 06:11:54 +00:00
Create fastapi_app.py
This commit is contained in:
parent
b5a50686d6
commit
4ff169a19a
178
demo/fastapi_app.py
Normal file
178
demo/fastapi_app.py
Normal file
@ -0,0 +1,178 @@
|
||||
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
|
||||
from fastapi.responses import JSONResponse, StreamingResponse
|
||||
import torch
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import io
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
# Load model and processor
|
||||
model_path = "deepseek-ai/Janus-1.3B"
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
language_config = config.language_config
|
||||
language_config._attn_implementation = 'eager'
|
||||
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
|
||||
language_config=language_config,
|
||||
trust_remote_code=True)
|
||||
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
|
||||
|
||||
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
|
||||
tokenizer = vl_chat_processor.tokenizer
|
||||
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def multimodal_understanding(image_data, question, seed, top_p, temperature):
|
||||
torch.cuda.empty_cache()
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
|
||||
conversation = [
|
||||
{
|
||||
"role": "User",
|
||||
"content": f"<image_placeholder>\n{question}",
|
||||
"images": [image_data],
|
||||
},
|
||||
{"role": "Assistant", "content": ""},
|
||||
]
|
||||
|
||||
pil_images = [Image.open(io.BytesIO(image_data))]
|
||||
prepare_inputs = vl_chat_processor(
|
||||
conversations=conversation, images=pil_images, force_batchify=True
|
||||
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
|
||||
|
||||
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
||||
outputs = vl_gpt.language_model.generate(
|
||||
inputs_embeds=inputs_embeds,
|
||||
attention_mask=prepare_inputs.attention_mask,
|
||||
pad_token_id=tokenizer.eos_token_id,
|
||||
bos_token_id=tokenizer.bos_token_id,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
max_new_tokens=512,
|
||||
do_sample=False if temperature == 0 else True,
|
||||
use_cache=True,
|
||||
temperature=temperature,
|
||||
top_p=top_p,
|
||||
)
|
||||
|
||||
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
||||
return answer
|
||||
|
||||
|
||||
@app.post("/understand_image_and_question/")
|
||||
async def understand_image_and_question(
|
||||
file: UploadFile = File(...),
|
||||
question: str = Form(...),
|
||||
seed: int = Form(42),
|
||||
top_p: float = Form(0.95),
|
||||
temperature: float = Form(0.1)
|
||||
):
|
||||
image_data = await file.read()
|
||||
response = multimodal_understanding(image_data, question, seed, top_p, temperature)
|
||||
return JSONResponse({"response": response})
|
||||
|
||||
|
||||
def generate(input_ids,
|
||||
width,
|
||||
height,
|
||||
temperature: float = 1,
|
||||
parallel_size: int = 5,
|
||||
cfg_weight: float = 5,
|
||||
image_token_num_per_image: int = 576,
|
||||
patch_size: int = 16):
|
||||
torch.cuda.empty_cache()
|
||||
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
|
||||
for i in range(parallel_size * 2):
|
||||
tokens[i, :] = input_ids
|
||||
if i % 2 != 0:
|
||||
tokens[i, 1:-1] = vl_chat_processor.pad_id
|
||||
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
|
||||
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
|
||||
|
||||
pkv = None
|
||||
for i in range(image_token_num_per_image):
|
||||
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
|
||||
pkv = outputs.past_key_values
|
||||
hidden_states = outputs.last_hidden_state
|
||||
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
|
||||
logit_cond = logits[0::2, :]
|
||||
logit_uncond = logits[1::2, :]
|
||||
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
|
||||
probs = torch.softmax(logits / temperature, dim=-1)
|
||||
next_token = torch.multinomial(probs, num_samples=1)
|
||||
generated_tokens[:, i] = next_token.squeeze(dim=-1)
|
||||
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
|
||||
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
|
||||
inputs_embeds = img_embeds.unsqueeze(dim=1)
|
||||
patches = vl_gpt.gen_vision_model.decode_code(
|
||||
generated_tokens.to(dtype=torch.int),
|
||||
shape=[parallel_size, 8, width // patch_size, height // patch_size]
|
||||
)
|
||||
|
||||
return generated_tokens.to(dtype=torch.int), patches
|
||||
|
||||
|
||||
def unpack(dec, width, height, parallel_size=5):
|
||||
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
|
||||
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
|
||||
|
||||
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
|
||||
visual_img[:, :, :] = dec
|
||||
|
||||
return visual_img
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate_image(prompt, seed, guidance):
|
||||
torch.cuda.empty_cache()
|
||||
seed = seed if seed is not None else 12345
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
width = 384
|
||||
height = 384
|
||||
parallel_size = 5
|
||||
|
||||
with torch.no_grad():
|
||||
messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}]
|
||||
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
|
||||
conversations=messages,
|
||||
sft_format=vl_chat_processor.sft_format,
|
||||
system_prompt=''
|
||||
)
|
||||
text = text + vl_chat_processor.image_start_tag
|
||||
input_ids = torch.LongTensor(tokenizer.encode(text))
|
||||
_, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size)
|
||||
images = unpack(patches, width // 16 * 16, height // 16 * 16)
|
||||
|
||||
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
|
||||
|
||||
|
||||
@app.post("/generate_images/")
|
||||
async def generate_images(
|
||||
prompt: str = Form(...),
|
||||
seed: int = Form(None),
|
||||
guidance: float = Form(5.0),
|
||||
):
|
||||
try:
|
||||
images = generate_image(prompt, seed, guidance)
|
||||
def image_stream():
|
||||
for img in images:
|
||||
buf = io.BytesIO()
|
||||
img.save(buf, format='PNG')
|
||||
buf.seek(0)
|
||||
yield buf.read()
|
||||
|
||||
return StreamingResponse(image_stream(), media_type="multipart/related")
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
Loading…
Reference in New Issue
Block a user