Create fastapi_app.py

This commit is contained in:
learningpro 2024-10-22 15:18:11 +08:00 committed by GitHub
parent b5a50686d6
commit 4ff169a19a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

178
demo/fastapi_app.py Normal file
View File

@ -0,0 +1,178 @@
from fastapi import FastAPI, File, Form, UploadFile, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from PIL import Image
import numpy as np
import io
app = FastAPI()
# Load model and processor
model_path = "deepseek-ai/Janus-1.3B"
config = AutoConfig.from_pretrained(model_path)
language_config = config.language_config
language_config._attn_implementation = 'eager'
vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,
language_config=language_config,
trust_remote_code=True)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda()
vl_chat_processor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
cuda_device = 'cuda' if torch.cuda.is_available() else 'cpu'
@torch.inference_mode()
def multimodal_understanding(image_data, question, seed, top_p, temperature):
torch.cuda.empty_cache()
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
conversation = [
{
"role": "User",
"content": f"<image_placeholder>\n{question}",
"images": [image_data],
},
{"role": "Assistant", "content": ""},
]
pil_images = [Image.open(io.BytesIO(image_data))]
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(cuda_device, dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float16)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False if temperature == 0 else True,
use_cache=True,
temperature=temperature,
top_p=top_p,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return answer
@app.post("/understand_image_and_question/")
async def understand_image_and_question(
file: UploadFile = File(...),
question: str = Form(...),
seed: int = Form(42),
top_p: float = Form(0.95),
temperature: float = Form(0.1)
):
image_data = await file.read()
response = multimodal_understanding(image_data, question, seed, top_p, temperature)
return JSONResponse({"response": response})
def generate(input_ids,
width,
height,
temperature: float = 1,
parallel_size: int = 5,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
patch_size: int = 16):
torch.cuda.empty_cache()
tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).to(cuda_device)
for i in range(parallel_size * 2):
tokens[i, :] = input_ids
if i % 2 != 0:
tokens[i, 1:-1] = vl_chat_processor.pad_id
inputs_embeds = vl_gpt.language_model.get_input_embeddings()(tokens)
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).to(cuda_device)
pkv = None
for i in range(image_token_num_per_image):
outputs = vl_gpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=pkv)
pkv = outputs.past_key_values
hidden_states = outputs.last_hidden_state
logits = vl_gpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = vl_gpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
patches = vl_gpt.gen_vision_model.decode_code(
generated_tokens.to(dtype=torch.int),
shape=[parallel_size, 8, width // patch_size, height // patch_size]
)
return generated_tokens.to(dtype=torch.int), patches
def unpack(dec, width, height, parallel_size=5):
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, width, height, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
return visual_img
@torch.inference_mode()
def generate_image(prompt, seed, guidance):
torch.cuda.empty_cache()
seed = seed if seed is not None else 12345
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
width = 384
height = 384
parallel_size = 5
with torch.no_grad():
messages = [{'role': 'User', 'content': prompt}, {'role': 'Assistant', 'content': ''}]
text = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
conversations=messages,
sft_format=vl_chat_processor.sft_format,
system_prompt=''
)
text = text + vl_chat_processor.image_start_tag
input_ids = torch.LongTensor(tokenizer.encode(text))
_, patches = generate(input_ids, width // 16 * 16, height // 16 * 16, cfg_weight=guidance, parallel_size=parallel_size)
images = unpack(patches, width // 16 * 16, height // 16 * 16)
return [Image.fromarray(images[i]).resize((1024, 1024), Image.LANCZOS) for i in range(parallel_size)]
@app.post("/generate_images/")
async def generate_images(
prompt: str = Form(...),
seed: int = Form(None),
guidance: float = Form(5.0),
):
try:
images = generate_image(prompt, seed, guidance)
def image_stream():
for img in images:
buf = io.BytesIO()
img.save(buf, format='PNG')
buf.seek(0)
yield buf.read()
return StreamingResponse(image_stream(), media_type="multipart/related")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Image generation failed: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)