mirror of
https://github.com/deepseek-ai/Janus
synced 2024-12-31 16:21:51 +00:00
68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
|
# Copyright (c) 2023-2024 DeepSeek.
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
|
# this software and associated documentation files (the "Software"), to deal in
|
||
|
# the Software without restriction, including without limitation the rights to
|
||
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
||
|
# subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
import torch
|
||
|
from transformers import AutoModelForCausalLM
|
||
|
|
||
|
from janus.models import MultiModalityCausalLM, VLChatProcessor
|
||
|
from janus.utils.io import load_pil_images
|
||
|
|
||
|
# specify the path to the model
|
||
|
model_path = "deepseek-ai/Janus-1.3B"
|
||
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
||
|
tokenizer = vl_chat_processor.tokenizer
|
||
|
|
||
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
||
|
model_path, trust_remote_code=True
|
||
|
)
|
||
|
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
|
||
|
|
||
|
conversation = [
|
||
|
{
|
||
|
"role": "User",
|
||
|
"content": "<image_placeholder>\nConvert the formula into latex code.",
|
||
|
"images": ["images/equation.png"],
|
||
|
},
|
||
|
{"role": "Assistant", "content": ""},
|
||
|
]
|
||
|
|
||
|
# load images and prepare for inputs
|
||
|
pil_images = load_pil_images(conversation)
|
||
|
prepare_inputs = vl_chat_processor(
|
||
|
conversations=conversation, images=pil_images, force_batchify=True
|
||
|
).to(vl_gpt.device)
|
||
|
|
||
|
# # run image encoder to get the image embeddings
|
||
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
||
|
|
||
|
# # run the model to get the response
|
||
|
outputs = vl_gpt.language_model.generate(
|
||
|
inputs_embeds=inputs_embeds,
|
||
|
attention_mask=prepare_inputs.attention_mask,
|
||
|
pad_token_id=tokenizer.eos_token_id,
|
||
|
bos_token_id=tokenizer.bos_token_id,
|
||
|
eos_token_id=tokenizer.eos_token_id,
|
||
|
max_new_tokens=512,
|
||
|
do_sample=False,
|
||
|
use_cache=True,
|
||
|
)
|
||
|
|
||
|
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
||
|
print(f"{prepare_inputs['sft_format'][0]}", answer)
|