mirror of
https://github.com/deepseek-ai/Janus
synced 2024-12-31 16:21:51 +00:00
101 lines
3.5 KiB
Python
101 lines
3.5 KiB
Python
|
# Copyright (c) 2023-2024 DeepSeek.
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
|
# this software and associated documentation files (the "Software"), to deal in
|
||
|
# the Software without restriction, including without limitation the rights to
|
||
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
||
|
# subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
from typing import Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from attrdict import AttrDict
|
||
|
|
||
|
|
||
|
class MlpProjector(nn.Module):
|
||
|
def __init__(self, cfg):
|
||
|
super().__init__()
|
||
|
|
||
|
self.cfg = cfg
|
||
|
|
||
|
if cfg.projector_type == "identity":
|
||
|
modules = nn.Identity()
|
||
|
|
||
|
elif cfg.projector_type == "linear":
|
||
|
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
|
||
|
|
||
|
elif cfg.projector_type == "mlp_gelu":
|
||
|
mlp_depth = cfg.get("depth", 1)
|
||
|
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
|
||
|
for _ in range(1, mlp_depth):
|
||
|
modules.append(nn.GELU())
|
||
|
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
||
|
modules = nn.Sequential(*modules)
|
||
|
|
||
|
elif cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
|
||
|
mlp_depth = cfg.get("depth", 1)
|
||
|
self.high_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
||
|
self.low_up_proj = nn.Linear(cfg.input_dim, cfg.n_embed // 2)
|
||
|
|
||
|
modules = []
|
||
|
for _ in range(1, mlp_depth):
|
||
|
modules.append(nn.GELU())
|
||
|
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
||
|
modules = nn.Sequential(*modules)
|
||
|
|
||
|
else:
|
||
|
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
|
||
|
|
||
|
self.layers = modules
|
||
|
|
||
|
def forward(
|
||
|
self, x_or_tuple: Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]
|
||
|
):
|
||
|
"""
|
||
|
|
||
|
Args:
|
||
|
x_or_tuple (Union[Tuple[torch.Tensor, torch.Tensor], torch.Tensor]: if it is a tuple of torch.Tensor,
|
||
|
then it comes from the hybrid vision encoder, and x = high_res_x, low_res_x);
|
||
|
otherwise it is the feature from the single vision encoder.
|
||
|
|
||
|
Returns:
|
||
|
x (torch.Tensor): [b, s, c]
|
||
|
"""
|
||
|
|
||
|
if isinstance(x_or_tuple, tuple):
|
||
|
# self.cfg.projector_type == "low_high_hybrid_split_mlp_gelu":
|
||
|
high_x, low_x = x_or_tuple
|
||
|
high_x = self.high_up_proj(high_x)
|
||
|
low_x = self.low_up_proj(low_x)
|
||
|
x = torch.concat([high_x, low_x], dim=-1)
|
||
|
else:
|
||
|
x = x_or_tuple
|
||
|
|
||
|
return self.layers(x)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
cfg = AttrDict(
|
||
|
input_dim=1024,
|
||
|
n_embed=2048,
|
||
|
depth=2,
|
||
|
projector_type="low_high_hybrid_split_mlp_gelu",
|
||
|
)
|
||
|
inputs = (torch.rand(4, 576, 1024), torch.rand(4, 576, 1024))
|
||
|
|
||
|
m = MlpProjector(cfg)
|
||
|
out = m(inputs)
|
||
|
print(out.shape)
|