FlashMLA/csrc/flash_parameter.h
Kevin Zhang e0557deb3a Feature:Support flashMLA decoding via flashAttn2(#29)
Changes:
1. Implement flashMLA with matrix absorption algorithm via flashAttn2
2. Add golden test on MXMACA platform
2025-02-24 23:56:05 +08:00

234 lines
6.5 KiB
C++

/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cuda.h>
#include <vector>
constexpr int maxValidBlockSizeM = 128;
namespace mcFlashAttn {
struct Qkv_params {
using index_t = int64_t;
// The QKV matrices.
void *__restrict__ q_ptr;
void *__restrict__ k_ptr;
void *__restrict__ v_ptr;
// The stride between rows of the Q, K and V matrices.
index_t q_batch_stride;
index_t k_batch_stride;
index_t v_batch_stride;
index_t q_row_stride;
index_t k_row_stride;
index_t v_row_stride;
index_t q_head_stride;
index_t k_head_stride;
index_t v_head_stride;
// The number of heads.
int h, h_k;
// In the case of multi-query and grouped-query attention (MQA/GQA), nheads_k could be
// different from nheads (query).
int h_h_k_ratio; // precompute h / h_k,
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_fwd_params : public Qkv_params {
// The O matrix (output).
void * __restrict__ o_ptr;
void * __restrict__ oaccum_ptr;
// The stride between rows of O.
index_t o_batch_stride;
index_t o_row_stride;
index_t o_head_stride;
// The pointer to the P matrix.
void * __restrict__ p_ptr;
// The pointer to the softmax sum.
void * __restrict__ softmax_lse_ptr;
void * __restrict__ softmax_lseaccum_ptr;
// The dimensions.
int b, seqlen_q, seqlen_k, seqlen_knew, d, seqlen_q_rounded, seqlen_k_rounded, d_rounded, rotary_dim, total_q;
// The scaling factors for the kernel.
float scale_softmax;
float scale_softmax_log2;
// array of length b+1 holding starting offset of each sequence.
int * __restrict__ cu_seqlens_q;
int * __restrict__ cu_seqlens_k;
int * __restrict__ leftpad_k;
// If provided, the actual length of each k sequence.
int * __restrict__ seqused_k;
int *__restrict__ blockmask;
// The K_new and V_new matrices.
void * __restrict__ knew_ptr;
void * __restrict__ vnew_ptr;
// The stride between rows of the Q, K and V matrices.
index_t knew_batch_stride;
index_t vnew_batch_stride;
index_t knew_row_stride;
index_t vnew_row_stride;
index_t knew_head_stride;
index_t vnew_head_stride;
// kv cache dequant
index_t kscale_batch_stride;
index_t vscale_batch_stride;
index_t kscale_row_stride;
index_t vscale_row_stride;
index_t kscale_head_stride;
index_t vscale_head_stride;
// The cos and sin matrices for rotary embedding.
void * __restrict__ rotary_cos_ptr;
void * __restrict__ rotary_sin_ptr;
// The indices to index into the KV cache.
int * __restrict__ cache_batch_idx;
// Paged KV cache
int * __restrict__ block_table;
index_t block_table_batch_stride;
// when page attn is not enable, page_block_size will has default value 0.
int page_block_size;
// KV Cache dequant
int dequant_group;
void *__restrict__ k_scale_ptr;
void *__restrict__ v_scale_ptr;
// The dropout probability (probability of keeping an activation).
float p_dropout;
// uint32_t p_dropout_in_uint;
// uint16_t p_dropout_in_uint16_t;
uint8_t p_dropout_in_uint8_t;
// Scale factor of 1 / (1 - p_dropout).
float rp_dropout;
float scale_softmax_rp_dropout;
// Local window size
int window_size_left, window_size_right;
// ratio of softcapping attention
// S = exp2(log2(e) * softcap * tanh(S * softmax_scale / softcap))
// only value > 0.0 will take effect
float softcap;
// Random state.
// at::PhiloxCudaState philox_args;
// the RNG seed and offset .
uint64_t rng_state_seed = 0;
uint64_t rng_state_offset = 0;
bool is_bf16;
bool is_causal;
// If is_seqlens_k_cumulative, then seqlen_k is cu_seqlens_k[bidb + 1] - cu_seqlens_k[bidb].
// Otherwise it's cu_seqlens_k[bidb], i.e., we use cu_seqlens_k to store the sequence lengths of K.
bool is_seqlens_k_cumulative;
bool is_rotary_interleaved;
int num_splits; // For split-KV version
void * __restrict__ alibi_slopes_ptr;
index_t alibi_slopes_batch_stride;
// attn_mask support for bert model Jira[C500-21935]
bool has_attn_mask;
void * __restrict__ attn_mask_ptr = nullptr;
index_t attn_mask_batch_stride = 0;
index_t attn_mask_nheads_stride = 0;
index_t attn_mask_row_stride = 0;
index_t attn_mask_col_stride = 1;
index_t attn_mask_batch_shape = 1;
index_t attn_mask_nheads_shape = 1;
index_t attn_mask_row_shape = 1;
index_t attn_mask_col_shape = 1;
bool unpadded_lse; // For varlen paths: LSE is in [nheads, total_seqlen_q] format instead of [b, nheads, seqlen_q].
bool seqlenq_ngroups_swapped; // q has been transposed from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d).
int d_value;
int d_value_rounded;
bool is_support_splitkv = false;
};
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_bwd_params : public Flash_fwd_params {
// The dO and dQKV matrices.
void *__restrict__ do_ptr;
void *__restrict__ dq_ptr;
void *__restrict__ dk_ptr;
void *__restrict__ dv_ptr;
// To accumulate dQ
void *__restrict__ dq_accum_ptr;
void *__restrict__ dk_accum_ptr;
void *__restrict__ dv_accum_ptr;
// // To accumulate dK and dV in case we're splitting the bwd along seqlen_q
// dimension void *__restrict__ dk_accum_ptr; void *__restrict__
// dv_accum_ptr;
// The stride between rows of the dO, dQ, dK and dV matrices.
// The code probably won't work for arrays larger than 2GB.
index_t do_batch_stride;
index_t do_row_stride;
index_t do_head_stride;
index_t dq_batch_stride;
index_t dk_batch_stride;
index_t dv_batch_stride;
index_t dq_row_stride;
index_t dk_row_stride;
index_t dv_row_stride;
index_t dq_head_stride;
index_t dk_head_stride;
index_t dv_head_stride;
// The pointer to the softmax d sum.
void *__restrict__ dsoftmax_sum;
bool deterministic;
index_t dq_accum_split_stride;
// asm mha_bwd kernel needs packed_seqlen
int packed_seqlen;
};
struct Flash_launch_params {
bool is_balance;
int rowblock_parallel;
int block_type;
bool performance_mode; // from offline
Flash_launch_params():
is_balance(false),rowblock_parallel(0),block_type(0),performance_mode(false){}
};
}