mirror of
https://github.com/deepseek-ai/FlashMLA
synced 2025-04-22 23:24:22 +00:00
514 lines
18 KiB
Python
514 lines
18 KiB
Python
# MLA Triton kernel is from: https://github.com/monellz/vllm/commit/feebaa7c063be6bfb590a876741aeef1c5f58cf8#diff-7b2e1c9032522f7266051b9887246a65753871dfb3625a258fee40109fe6e87a
|
|
import math
|
|
import random
|
|
|
|
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
import argparse
|
|
|
|
# pip install flashinfer-python
|
|
from flash_mla import get_mla_metadata, flash_mla_with_kvcache
|
|
import flashinfer
|
|
|
|
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
|
|
query = query.float()
|
|
key = key.float()
|
|
value = value.float()
|
|
key = key.repeat_interleave(h_q // h_kv, dim=0)
|
|
value = value.repeat_interleave(h_q // h_kv, dim=0)
|
|
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
|
|
if is_causal:
|
|
s_q = query.shape[-2]
|
|
s_k = key.shape[-2]
|
|
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
|
|
temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
|
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
attn_bias.to(query.dtype)
|
|
attn_weight += attn_bias
|
|
lse = attn_weight.logsumexp(dim=-1)
|
|
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
|
|
return attn_weight @ value, lse
|
|
|
|
|
|
@torch.inference_mode()
|
|
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
for i in range(b):
|
|
blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan")
|
|
blocked_v = blocked_k[..., :dv]
|
|
|
|
def ref_mla():
|
|
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
|
|
lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
|
|
for i in range(b):
|
|
begin = i * max_seqlen_pad
|
|
end = begin + cache_seqlens[i]
|
|
O, LSE = scaled_dot_product_attention(
|
|
q[i].transpose(0, 1),
|
|
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
|
|
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
|
|
h_q, h_kv,
|
|
is_causal=causal,
|
|
)
|
|
out[i] = O.transpose(0, 1)
|
|
lse[i] = LSE
|
|
return out, lse
|
|
|
|
out_torch, lse_torch = ref_mla()
|
|
t = triton.testing.do_bench(ref_mla)
|
|
return out_torch, lse_torch, t
|
|
|
|
@torch.inference_mode()
|
|
def run_flash_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
for i in range(b):
|
|
blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan")
|
|
blocked_v = blocked_k[..., :dv]
|
|
|
|
tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)
|
|
|
|
def flash_mla():
|
|
return flash_mla_with_kvcache(
|
|
q, blocked_k, block_table, cache_seqlens, dv,
|
|
tile_scheduler_metadata, num_splits, causal=causal,
|
|
)
|
|
|
|
out_flash, lse_flash = flash_mla()
|
|
t = triton.testing.do_bench(flash_mla)
|
|
return out_flash, lse_flash, t
|
|
|
|
|
|
@torch.inference_mode()
|
|
def run_flash_infer(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
|
|
for i in range(b):
|
|
blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan")
|
|
|
|
assert d > dv, "mla with rope dim should be larger than no rope dim"
|
|
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
|
|
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[..., dv:].contiguous()
|
|
|
|
|
|
kv_indptr = [0]
|
|
kv_indices = []
|
|
for i in range(b):
|
|
seq_len = cache_seqlens[i]
|
|
assert seq_len > 0
|
|
num_blocks = (seq_len + block_size - 1) // block_size
|
|
kv_indices.extend(block_table[i, :num_blocks])
|
|
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
|
for seq_len in cache_seqlens[1:]:
|
|
kv_indptr.append((seq_len + block_size - 1) // block_size + kv_indptr[-1])
|
|
|
|
q_indptr = torch.arange(0, b + 1).int() * s_q
|
|
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
|
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
|
|
|
mla_wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
|
|
torch.empty(128 * 1024 * 1024, dtype=torch.int8),
|
|
backend="fa3"
|
|
)
|
|
mla_wrapper.plan(
|
|
q_indptr,
|
|
kv_indptr,
|
|
kv_indices,
|
|
cache_seqlens,
|
|
h_q,
|
|
dv,
|
|
d-dv,
|
|
block_size,
|
|
causal,
|
|
1 / math.sqrt(d),
|
|
q.dtype,
|
|
blocked_k.dtype,
|
|
)
|
|
|
|
def flash_infer():
|
|
output, lse = mla_wrapper.run(q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d-dv), blocked_k_nope, blocked_k_pe, return_lse=True)
|
|
return output.view(b, -1, h_q, dv), lse.view(b, h_q, 1)
|
|
|
|
out_flash, lse_flash = flash_infer()
|
|
t = triton.testing.do_bench(flash_infer)
|
|
return out_flash, lse_flash, t
|
|
|
|
|
|
@triton.jit
|
|
def _mla_attn_kernel(
|
|
Q_nope,
|
|
Q_pe,
|
|
Kv_c_cache,
|
|
K_pe_cache,
|
|
Req_to_tokens,
|
|
B_seq_len,
|
|
O,
|
|
sm_scale,
|
|
stride_q_nope_bs,
|
|
stride_q_nope_h,
|
|
stride_q_pe_bs,
|
|
stride_q_pe_h,
|
|
stride_kv_c_bs,
|
|
stride_k_pe_bs,
|
|
stride_req_to_tokens_bs,
|
|
stride_o_b,
|
|
stride_o_h,
|
|
stride_o_s,
|
|
BLOCK_H: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
NUM_KV_SPLITS: tl.constexpr,
|
|
PAGE_SIZE: tl.constexpr,
|
|
HEAD_DIM_CKV: tl.constexpr,
|
|
HEAD_DIM_KPE: tl.constexpr,
|
|
):
|
|
cur_batch = tl.program_id(1)
|
|
cur_head_id = tl.program_id(0)
|
|
split_kv_id = tl.program_id(2)
|
|
|
|
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
|
|
|
|
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
|
|
cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
|
|
offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[None, :]
|
|
q_nope = tl.load(Q_nope + offs_q_nope)
|
|
|
|
offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
|
|
offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
|
|
q_pe = tl.load(Q_pe + offs_q_pe)
|
|
|
|
e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
|
|
e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
|
|
acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)
|
|
|
|
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
|
|
split_kv_start = kv_len_per_split * split_kv_id
|
|
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
|
|
|
|
for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
|
|
offs_n = start_n + tl.arange(0, BLOCK_N)
|
|
kv_page_number = tl.load(
|
|
Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
|
|
mask=offs_n < split_kv_end,
|
|
other=0,
|
|
)
|
|
kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
|
|
offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
|
|
k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)
|
|
|
|
qk = tl.dot(q_nope, k_c.to(q_nope.dtype))
|
|
|
|
offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
|
|
k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)
|
|
|
|
qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
|
|
qk *= sm_scale
|
|
|
|
qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))
|
|
|
|
v_c = tl.trans(k_c)
|
|
|
|
n_e_max = tl.maximum(tl.max(qk, 1), e_max)
|
|
re_scale = tl.exp(e_max - n_e_max)
|
|
p = tl.exp(qk - n_e_max[:, None])
|
|
acc *= re_scale[:, None]
|
|
acc += tl.dot(p.to(v_c.dtype), v_c)
|
|
|
|
e_sum = e_sum * re_scale + tl.sum(p, 1)
|
|
e_max = n_e_max
|
|
offs_o = cur_batch * stride_o_b + cur_head[:, None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[None, :]
|
|
tl.store(O + offs_o, acc / e_sum[:, None])
|
|
offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
|
|
tl.store(O + offs_o_1, e_max + tl.log(e_sum))
|
|
|
|
|
|
def _mla_attn(
|
|
q_nope,
|
|
q_pe,
|
|
kv_c_cache,
|
|
k_pe_cache,
|
|
attn_logits,
|
|
req_to_tokens,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
):
|
|
batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
|
|
head_dim_ckv = q_nope.shape[-1]
|
|
head_dim_kpe = q_pe.shape[-1]
|
|
|
|
BLOCK_H = 16
|
|
BLOCK_N = 64
|
|
grid = (
|
|
triton.cdiv(head_num, BLOCK_H),
|
|
batch_size,
|
|
num_kv_splits,
|
|
)
|
|
_mla_attn_kernel[grid](
|
|
q_nope,
|
|
q_pe,
|
|
kv_c_cache,
|
|
k_pe_cache,
|
|
req_to_tokens,
|
|
b_seq_len,
|
|
attn_logits,
|
|
sm_scale,
|
|
# stride
|
|
q_nope.stride(0),
|
|
q_nope.stride(1),
|
|
q_pe.stride(0),
|
|
q_pe.stride(1),
|
|
kv_c_cache.stride(-2),
|
|
k_pe_cache.stride(-2),
|
|
req_to_tokens.stride(0),
|
|
attn_logits.stride(0),
|
|
attn_logits.stride(1),
|
|
attn_logits.stride(2),
|
|
BLOCK_H=BLOCK_H,
|
|
BLOCK_N=BLOCK_N,
|
|
NUM_KV_SPLITS=num_kv_splits,
|
|
PAGE_SIZE=page_size,
|
|
HEAD_DIM_CKV=head_dim_ckv,
|
|
HEAD_DIM_KPE=head_dim_kpe,
|
|
)
|
|
|
|
@triton.jit
|
|
def _mla_softmax_reducev_kernel(
|
|
Logits,
|
|
B_seq_len,
|
|
O,
|
|
stride_l_b,
|
|
stride_l_h,
|
|
stride_l_s,
|
|
stride_o_b,
|
|
stride_o_h,
|
|
NUM_KV_SPLITS: tl.constexpr,
|
|
HEAD_DIM_CKV: tl.constexpr,
|
|
):
|
|
cur_batch = tl.program_id(0)
|
|
cur_head = tl.program_id(1)
|
|
cur_batch_seq_len = tl.load(B_seq_len + cur_batch)
|
|
|
|
offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
|
|
|
|
e_sum = 0.0
|
|
e_max = -float("inf")
|
|
acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)
|
|
|
|
offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
|
|
offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV
|
|
|
|
for split_kv_id in range(0, NUM_KV_SPLITS):
|
|
kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
|
|
split_kv_start = kv_len_per_split * split_kv_id
|
|
split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)
|
|
|
|
if split_kv_end > split_kv_start:
|
|
logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
|
|
logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)
|
|
|
|
n_e_max = tl.maximum(logits_1, e_max)
|
|
old_scale = tl.exp(e_max - n_e_max)
|
|
acc *= old_scale
|
|
exp_logic = tl.exp(logits_1 - n_e_max)
|
|
acc += exp_logic * logits
|
|
|
|
e_sum = e_sum * old_scale + exp_logic
|
|
e_max = n_e_max
|
|
|
|
tl.store(
|
|
O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
|
|
acc / e_sum,
|
|
)
|
|
|
|
|
|
def _mla_softmax_reducev(
|
|
logits,
|
|
o,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
):
|
|
batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
|
|
grid = (batch_size, head_num)
|
|
_mla_softmax_reducev_kernel[grid](
|
|
logits,
|
|
b_seq_len,
|
|
o,
|
|
logits.stride(0),
|
|
logits.stride(1),
|
|
logits.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
NUM_KV_SPLITS=num_kv_splits,
|
|
HEAD_DIM_CKV=head_dim_ckv,
|
|
num_warps=4,
|
|
num_stages=2,
|
|
)
|
|
|
|
def mla_decode_triton(
|
|
q_nope,
|
|
q_pe,
|
|
kv_c_cache,
|
|
k_pe_cache,
|
|
o,
|
|
req_to_tokens,
|
|
b_seq_len,
|
|
attn_logits,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
):
|
|
assert num_kv_splits == attn_logits.shape[2]
|
|
_mla_attn(
|
|
q_nope,
|
|
q_pe,
|
|
kv_c_cache,
|
|
k_pe_cache,
|
|
attn_logits,
|
|
req_to_tokens,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
sm_scale,
|
|
page_size,
|
|
)
|
|
_mla_softmax_reducev(
|
|
attn_logits,
|
|
o,
|
|
b_seq_len,
|
|
num_kv_splits,
|
|
)
|
|
|
|
|
|
@torch.inference_mode()
|
|
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
|
|
for i in range(b):
|
|
blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan")
|
|
blocked_v = blocked_k[..., :dv]
|
|
|
|
assert d > dv, "mla with rope dim should be larger than no rope dim"
|
|
q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
|
|
blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[..., dv:].contiguous()
|
|
|
|
def flash_mla_triton():
|
|
num_kv_splits = 32
|
|
o = torch.empty([b * s_q, h_q, dv])
|
|
attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
|
|
mla_decode_triton(q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d-dv), blocked_k_nope.view(-1, dv), blocked_k_pe.view(-1, d-dv), o, block_table, cache_seqlens, attn_logits, num_kv_splits, 1 / math.sqrt(d), block_size)
|
|
return o.view([b, s_q, h_q, dv])
|
|
|
|
out_flash = flash_mla_triton()
|
|
t = triton.testing.do_bench(flash_mla_triton)
|
|
return out_flash, None, t
|
|
|
|
|
|
FUNC_TABLE = {
|
|
"torch": run_torch_mla,
|
|
"flash_mla": run_flash_mla,
|
|
"flash_infer": run_flash_infer,
|
|
"flash_mla_triton": run_flash_mla_triton,
|
|
}
|
|
|
|
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
print(f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}")
|
|
device = torch.device("cuda:0")
|
|
torch.set_default_dtype(dtype)
|
|
torch.set_default_device(device)
|
|
torch.cuda.set_device(device)
|
|
torch.manual_seed(0)
|
|
random.seed(0)
|
|
assert baseline in FUNC_TABLE
|
|
assert target in FUNC_TABLE
|
|
baseline_func = FUNC_TABLE[baseline]
|
|
target_func = FUNC_TABLE[target]
|
|
|
|
total_seqlens = cache_seqlens.sum().item()
|
|
mean_seqlens = cache_seqlens.float().mean().int().item()
|
|
max_seqlen = cache_seqlens.max().item()
|
|
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
|
|
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
|
|
|
|
q = torch.randn(b, s_q, h_q, d)
|
|
block_size = 64
|
|
block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
|
|
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
|
|
|
|
out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
|
|
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
|
|
|
|
torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
|
|
if target not in ["flash_infer", "flash_mla_triton"]:
|
|
# flash_infer has a different lse return value
|
|
# flash_mla_triton doesn't return lse
|
|
torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"
|
|
|
|
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
|
|
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (torch.finfo(dtype).bits // 8)
|
|
print(f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s")
|
|
print(f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s")
|
|
|
|
|
|
def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
|
|
print(f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}")
|
|
torch.set_default_dtype(dtype)
|
|
device = torch.device("cuda:0")
|
|
torch.set_default_device(device)
|
|
torch.cuda.set_device(device)
|
|
torch.manual_seed(0)
|
|
random.seed(0)
|
|
assert target in FUNC_TABLE
|
|
target_func = FUNC_TABLE[target]
|
|
|
|
total_seqlens = cache_seqlens.sum().item()
|
|
mean_seqlens = cache_seqlens.float().mean().int().item()
|
|
max_seqlen = cache_seqlens.max().item()
|
|
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
|
|
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
|
|
|
|
q = torch.randn(b, s_q, h_q, d)
|
|
block_size = 64
|
|
block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
|
|
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
|
|
|
|
out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
|
|
|
|
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
|
|
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (torch.finfo(dtype).bits // 8)
|
|
print(f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s")
|
|
return bytes / 10 ** 6 / perf_b
|
|
|
|
|
|
available_targets = [
|
|
"torch",
|
|
"flash_mla",
|
|
"flash_infer",
|
|
"flash_mla_triton",
|
|
]
|
|
|
|
shape_configs = [
|
|
{"b": batch, "s_q": 1, "cache_seqlens": torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"), "h_q": head, "h_kv": 1, "d": 512+64, "dv": 512, "causal": True, "dtype": torch.bfloat16}
|
|
for batch in [128] for seqlen in [1024, 2048, 4096, 8192, 8192*2, 8192*4] for head in [128]
|
|
]
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--baseline", type=str, default="torch")
|
|
parser.add_argument("--target", type=str, default="flash_mla")
|
|
parser.add_argument("--all", action="store_true")
|
|
parser.add_argument("--one", action="store_true")
|
|
parser.add_argument("--compare", action="store_true")
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
with open("all_perf.csv", "w") as fout:
|
|
fout.write("name,batch,seqlen,head,bw\n")
|
|
for shape in shape_configs:
|
|
if args.all:
|
|
for target in available_targets:
|
|
perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"], shape["h_q"], shape["h_kv"], shape["d"], shape["dv"], shape["causal"], shape["dtype"])
|
|
fout.write(f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n')
|
|
elif args.compare:
|
|
compare_ab(args.baseline, args.target, shape["b"], shape["s_q"], shape["cache_seqlens"], shape["h_q"], shape["h_kv"], shape["d"], shape["dv"], shape["causal"], shape["dtype"])
|
|
elif args.one:
|
|
compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"], shape["h_q"], shape["h_kv"], shape["d"], shape["dv"], shape["causal"], shape["dtype"]) |