FlashMLA/csrc/flash_api.cpp
Shengyu Liu c2067be3ea
Performance Update (2025.04.22) (#71)
* Fix benchmark script

* Performance optimization for compute-bound cases

* Add new testcase (s_k = 16384)

* Update README.md

* Update comment

* Update README.md

* Add the deep-dive blog

* Add background color for MLA Kernel Sched.drawio.svg

* Use relative path for the schedule image

* Move flash_mla.h to kernels/params.h
2025-04-22 17:50:57 +08:00

217 lines
9.5 KiB
C++

// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/csrc/flash_attn/flash_api.cpp
/******************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#include <torch/python.h>
#include <torch/nn/functional.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cutlass/fast_math.h>
#include "kernels/config.h"
#include "kernels/get_mla_metadata.h"
#include "kernels/mla_combine.h"
#include "kernels/params.h"
#include "kernels/splitkv_mla.h"
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
std::vector<at::Tensor>
get_mla_metadata(
at::Tensor &seqlens_k,
const int num_heads_per_head_k,
const int num_heads_k
) {
CHECK_DEVICE(seqlens_k);
TORCH_CHECK(seqlens_k.is_contiguous());
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32);
int batch_size = seqlens_k.size(0);
int *seqlens_k_ptr = seqlens_k.data_ptr<int>();
auto options = seqlens_k.options();
auto dprops = at::cuda::getCurrentDeviceProperties();
int sm_count = dprops->multiProcessorCount;
int num_sm_parts = sm_count / num_heads_k / cutlass::ceil_div(num_heads_per_head_k, Config::BLOCK_SIZE_M);
auto tile_scheduler_metadata = torch::empty({num_sm_parts, TileSchedulerMetaDataSize}, options);
auto num_splits = torch::empty({batch_size + 1}, options);
int *tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr<int>();
int *num_splits_ptr = num_splits.data_ptr<int>();
at::cuda::CUDAGuard device_guard{(char)seqlens_k.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
Mla_metadata_params params = {};
params.seqlens_k_ptr = seqlens_k_ptr;
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata_ptr;
params.num_splits_ptr = num_splits_ptr;
params.batch_size = batch_size;
params.block_size_n = Config::PAGE_BLOCK_SIZE;
params.fixed_overhead_num_blocks = Config::FIXED_OVERHEAD_NUM_BLOCKS;
params.num_sm_parts = num_sm_parts;
run_get_mla_metadata_kernel(params, stream);
return {tile_scheduler_metadata, num_splits};
}
std::vector<at::Tensor>
mha_fwd_kvcache_mla(
at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &kcache, // num_blocks x page_block_size x num_heads_k x head_size
const int head_size_v,
const at::Tensor &seqlens_k, // batch_size
const at::Tensor &block_table, // batch_size x max_num_blocks_per_seq
const float softmax_scale,
bool is_causal,
const at::Tensor &tile_scheduler_metadata, // num_sm_parts x TileSchedulerMetaDataSize
const at::Tensor &num_splits // batch_size + 1
) {
// Check the architecture
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
TORCH_CHECK(is_sm90);
// Check data types
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kBFloat16 || q_dtype == torch::kHalf);
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
TORCH_CHECK(tile_scheduler_metadata.dtype() == torch::kInt32, "tile_scheduler_metadata must have dtype int32");
TORCH_CHECK(num_splits.dtype() == torch::kInt32, "num_splits must have dtype int32");
// Check device
CHECK_DEVICE(q);
CHECK_DEVICE(kcache);
CHECK_DEVICE(seqlens_k);
CHECK_DEVICE(block_table);
CHECK_DEVICE(tile_scheduler_metadata);
CHECK_DEVICE(num_splits);
// Check layout
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
CHECK_CONTIGUOUS(seqlens_k);
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
CHECK_CONTIGUOUS(tile_scheduler_metadata);
CHECK_CONTIGUOUS(num_splits);
const auto sizes = q.sizes();
const int batch_size = sizes[0];
const int seqlen_q_ori = sizes[1];
const int num_heads_q = sizes[2];
const int head_size_k = sizes[3];
TORCH_CHECK(head_size_k == 576, "Only head_size_k == 576 is supported");
TORCH_CHECK(head_size_v == 512, "Only head_size_v == 576 is supported");
const int max_num_blocks_per_seq = block_table.size(1);
const int num_blocks = kcache.size(0);
const int page_block_size = kcache.size(1);
const int num_heads_k = kcache.size(2);
TORCH_CHECK(batch_size > 0, "batch size must be postive");
TORCH_CHECK(num_heads_q % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (seqlen_q_ori == 1) { is_causal = false; }
const int num_q_heads_per_hk = num_heads_q / num_heads_k;
const int q_seq_per_hk = seqlen_q_ori * num_q_heads_per_hk;
const int num_heads = num_heads_k;
q = q.view({batch_size, seqlen_q_ori, num_heads_k, num_q_heads_per_hk, head_size_k}).transpose(2, 3)
.reshape({batch_size, q_seq_per_hk, num_heads, head_size_k});
CHECK_SHAPE(q, batch_size, q_seq_per_hk, num_heads, head_size_k);
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_k);
CHECK_SHAPE(seqlens_k, batch_size);
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
TORCH_CHECK(tile_scheduler_metadata.size(1) == TileSchedulerMetaDataSize);
CHECK_SHAPE(num_splits, batch_size+1);
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
at::Tensor out = torch::empty({batch_size, q_seq_per_hk, num_heads, head_size_v}, opts);
at::Tensor softmax_lse = torch::empty({batch_size, num_heads, q_seq_per_hk}, opts.dtype(at::kFloat));
CHECK_CONTIGUOUS(softmax_lse);
Flash_fwd_mla_params params = {};
// Set the sizes.
params.b = batch_size;
params.s_q = seqlen_q_ori;
params.q_seq_per_hk = q_seq_per_hk;
params.seqlens_k_ptr = seqlens_k.data_ptr<int>();
params.h_q = num_heads_q;
params.h_k = num_heads_k;
params.num_blocks = num_blocks;
params.q_head_per_hk = num_q_heads_per_hk;
params.is_causal = is_causal;
params.d = head_size_k;
params.d_v = head_size_v;
params.scale_softmax = softmax_scale;
params.scale_softmax_log2 = float(softmax_scale * M_LOG2E);
// Set the pointers and strides.
params.q_ptr = q.data_ptr();
params.k_ptr = kcache.data_ptr();
params.o_ptr = out.data_ptr();
params.softmax_lse_ptr = softmax_lse.data_ptr();
// All stride are in elements, not bytes.
params.q_batch_stride = q.stride(0);
params.k_batch_stride = kcache.stride(0);
params.o_batch_stride = out.stride(0);
params.q_row_stride = q.stride(-3);
params.k_row_stride = kcache.stride(-3);
params.o_row_stride = out.stride(-3);
params.q_head_stride = q.stride(-2);
params.k_head_stride = kcache.stride(-2);
params.o_head_stride = out.stride(-2);
params.block_table = block_table.data_ptr<int>();
params.block_table_batch_stride = block_table.stride(0);
params.page_block_size = page_block_size;
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr<int>();
params.num_sm_parts = tile_scheduler_metadata.size(0);
params.num_splits_ptr = num_splits.data_ptr<int>();
const int total_num_splits = batch_size + params.num_sm_parts;
at::Tensor softmax_lse_accum = torch::empty({total_num_splits, num_heads, q_seq_per_hk}, opts.dtype(at::kFloat));
at::Tensor out_accum = torch::empty({total_num_splits, num_heads, q_seq_per_hk, head_size_v}, opts.dtype(at::kFloat));
CHECK_CONTIGUOUS(softmax_lse_accum);
CHECK_CONTIGUOUS(out_accum);
params.total_num_splits = total_num_splits;
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
params.oaccum_ptr = out_accum.data_ptr();
auto stream = at::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK(head_size_k == 576);
if (q_dtype == torch::kBFloat16) {
run_flash_splitkv_mla_kernel<cutlass::bfloat16_t>(params, stream);
run_flash_mla_combine_kernel<cutlass::bfloat16_t>(params, stream);
} else if (q_dtype == torch::kHalf) {
#ifdef FLASH_MLA_DISABLE_FP16
TORCH_CHECK(false, "FlashMLA is compiled with -DFLASH_MLA_DISABLE_FP16. Please remove this flag from your environment and re-compile FlashMLA.");
#else
run_flash_splitkv_mla_kernel<cutlass::half_t>(params, stream);
run_flash_mla_combine_kernel<cutlass::half_t>(params, stream);
#endif
} else {
TORCH_CHECK(false, "Unsupported tensor dtype for query");
}
out = out.view({batch_size, seqlen_q_ori, num_q_heads_per_hk, num_heads_k, head_size_v}).transpose(2, 3)
.reshape({batch_size, seqlen_q_ori, num_heads_q, head_size_v});
softmax_lse = softmax_lse.view({batch_size, num_heads_k, seqlen_q_ori, num_q_heads_per_hk}).transpose(2, 3)
.reshape({batch_size, num_heads_q, seqlen_q_ori});
return {out, softmax_lse};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.doc() = "FlashMLA";
m.def("get_mla_metadata", &get_mla_metadata);
m.def("fwd_kvcache_mla", &mha_fwd_kvcache_mla);
}