# FlashMLA FlashMLA is an efficient MLA decoding kernel for Hopper GPUs, optimized for variable-length sequences serving. Currently released: - BF16 - Paged kvcache with block size of 64 ## Quick start ### Install ```bash python setup.py install ``` ### Benchmark ```bash python tests/test_flash_mla.py ``` Achieving up to 3000 GB/s in memory-bound configuration and 580 TFLOPS in computation-bound configuration on H800 SXM5, using CUDA 12.6. ### Usage ```python from flash_mla import get_mla_metadata, flash_mla_with_kvcache tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv) for i in range(num_layers): ... o_i, lse_i = flash_mla_with_kvcache( q_i, kvcache_i, block_table, cache_seqlens, dv, tile_scheduler_metadata, num_splits, causal=True, ) ... ``` ## Requirements - Hopper GPUs - CUDA 12.3 and above - PyTorch 2.0 and above ## Acknowledgement FlashMLA is inspired by [FlashAttention 2&3](https://github.com/dao-AILab/flash-attention/) and [cutlass](https://github.com/nvidia/cutlass) projects. ## Citation ```bibtex @misc{flashmla2025, title={FlashMLA: Efficient MLA decoding kernel}, author={Jiashi Li}, year={2025}, publisher = {GitHub}, howpublished = {\url{https://github.com/deepseek-ai/FlashMLA}}, } ```