Stage accumulator fragment to shared memory using tiled copy

This commit is contained in:
Gareth Jones 2025-02-23 18:23:07 -08:00
parent 414a2f3eed
commit 9f361aa02e

View File

@ -13,10 +13,14 @@ using namespace cute;
#include "static_switch.h"
#include "flash_mla.h"
template<typename PrecType, int DIM, int DIM2 = DIM>
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Helper: Decide K-Layout at SMEM level given type and dimension.
/// Swizzling is determined primarily by alignment constraints.
/// Return GMMA Layout at compile time.
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PrecType, int DIM, int DIM2 = DIM>
constexpr auto getSmemLayoutK() {
constexpr int headSizeBytes = sizeof(PrecType) * DIM;
constexpr int headSizeBytes = sizeof(PrecType) * DIM;
constexpr int headSizeBytes2 = sizeof(PrecType) * DIM2;
if constexpr (headSizeBytes % 128 == 0 && headSizeBytes2 % 128 == 0) {
@ -28,466 +32,462 @@ constexpr auto getSmemLayoutK() {
}
}
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::bfloat16_t, int kHeadDimV_ = 0>
struct Flash_fwd_kernel_traits_mla {
using Element = elem_type;
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Kernel Trait: FWD MLA for Flash Attention
/// - Templated on HeadDim (kHeadDim_), block tiling, warp usage, etc.
/// - Provides all necessary sub-layouts for Q/K/V, softmax partials, etc.
////////////////////////////////////////////////////////////////////////////////////////////////////
template <
int kHeadDim_,
int kBlockM_,
int kBlockN_,
int kNumWarps_,
typename ElemType = cutlass::bfloat16_t,
int kHeadDimV_ = 0
>
struct FlashFwdKernelTraitsMLA {
using Element = ElemType;
using ElementAccum = float;
using index_t = int64_t;
using IndexT = int64_t;
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kNWarpsS = 4;
static constexpr int kNThreadsS = kNWarpsS * 32;
// Warp organization
static constexpr int kNumWarps = kNumWarps_;
static constexpr int kNumThreads = kNumWarps * 32;
static constexpr int kNumWarpsSoftmax = 4;
static constexpr int kNumThreadsSoftmax = kNumWarpsSoftmax * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
// Tiling in M, N, K
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kHeadDimV = kHeadDimV_ != 0 ? kHeadDimV_ : kHeadDim;
// Possibly distinct V-dimension
static constexpr int kHeadDimV = (kHeadDimV_ != 0) ? kHeadDimV_ : kHeadDim;
static_assert(kHeadDimV % 32 == 0);
static_assert(kHeadDimV <= kHeadDim);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
// SMEM swizzling for partial K/V
static constexpr int kBlockKSmem = (kHeadDim % 64 == 0) ? 64 : 32;
static constexpr int kSwizzle = (kBlockKSmem == 32) ? 2 : 3;
// GMMA Tiled Mma
// Q*K -> S
using TiledMma = decltype(make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
GMMA::Major::K, GMMA::Major::K>(),
Layout<Shape<Int<kNWarpsS / 4>, _1, _1>>{}));
cute::GMMA::ss_op_selector<
Element, Element, ElementAccum,
Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
GMMA::Major::K, GMMA::Major::K
>(),
Layout<Shape<Int<kNumWarpsSoftmax / 4>, _1, _1>>{}
));
static constexpr int AtomLayoutNO = kNThreads / kNThreadsS;
// S*V -> O
// For the O “outer product,” we define the shape in [M, HeadDimV, N].
static constexpr int AtomLayoutNO = kNumThreads / kNumThreadsSoftmax;
using TiledMmaO = decltype(make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
GMMA::Major::K, GMMA::Major::MN>(),
Layout<Shape<Int<kNWarpsS / 4>, Int<AtomLayoutNO>, _1>>{}));
cute::GMMA::rs_op_selector<
Element, Element, ElementAccum,
Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
GMMA::Major::K, GMMA::Major::MN
>(),
Layout<Shape<Int<kNumWarpsSoftmax / 4>, Int<AtomLayoutNO>, _1>>{}
));
using SmemLayoutQ = decltype(tile_to_shape(
////////////////////////////////////////////////////////////////////////////////////////////////////
/// SMEM Layout definitions: Q/K/V, P, row-scale, etc.
////////////////////////////////////////////////////////////////////////////////////////////////////
using SmemLayoutQ = decltype(
tile_to_shape(
getSmemLayoutK<Element, kHeadDim>(),
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
Shape<Int<kBlockM>, Int<kHeadDim>>{}
)
);
using SmemLayoutK = decltype(tile_to_shape(
using SmemLayoutK = decltype(
tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
Shape<Int<kBlockN>, Int<kHeadDim>>{}
)
);
using SmemLayoutV = decltype(tile_to_shape(
using SmemLayoutV = decltype(
tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDimV>>{}));
using SmemLayoutVtransposed = decltype(composition(SmemLayoutV{}, make_layout(Shape<Int<kHeadDimV>, Int<kBlockN>>{}, GenRowMajor{})));
Shape<Int<kBlockN>, Int<kHeadDimV>>{}
)
);
using SmemLayoutVtransposed = decltype(
composition(
SmemLayoutV{},
make_layout(
Shape<Int<kHeadDimV>, Int<kBlockN>>{},
GenRowMajor{}
)
)
);
using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNThreadsS>, _1, Int<kBlockN / 8>>>;
using SmemLayoutRow = Layout<Shape<_2, Int<kNThreadsS>>, Stride<_1, _2>>;
// For partial S data (softmax region)
using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNumThreadsSoftmax>, _1, Int<kBlockN / 8>>>;
using SmemLayoutRow = Layout<Shape<_2, Int<kNumThreadsSoftmax>>, Stride<_1, _2>>;
using SmemLayoutAtomO = decltype(composition(
// Layout for the O tile in smem
using SmemLayoutAtomO = decltype(
composition(
Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}
)
);
using SmemLayoutO = decltype(
tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDimV>>{}));
using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;
Shape<Int<kBlockM>, Int<kHeadDimV>>{}
)
);
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Copy Atoms for SMEM read/write
////////////////////////////////////////////////////////////////////////////////////////////////////
using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;
////////////////////////////////////////////////////////////////////////////////////////////////////
/// GMEM Tiled Copies for Q/K/V
////////////////////////////////////////////////////////////////////////////////////////////////////
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must align with vector load size");
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
using Gmem_copy_struct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
static constexpr int kNThreadsLoad = kNThreads - kNThreadsS;
static_assert(kNThreadsLoad % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemCopyStruct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
static constexpr int kNumThreadsLoad = kNumThreads - kNumThreadsSoftmax;
static_assert(kNumThreadsLoad % kGmemThreadsPerRow == 0, "Thread counts must match row partitions");
using GmemLayoutAtom = Layout<
Shape<Int<kNThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopy = decltype(make_tiled_copy(
Copy_Atom<Gmem_copy_struct, Element>{},
Shape<Int<kNumThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>
>;
using GmemTiledCopy = decltype(
make_tiled_copy(
Copy_Atom<GmemCopyStruct, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
Layout<Shape<_1, _8>>{} // 8 vals per read
)
);
// For storing O to GMEM
using GmemLayoutAtomO = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyO = decltype(make_tiled_copy(
Shape<Int<kNumThreadsSoftmax / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>
>;
using GmemTiledCopyO = decltype(
make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtomO{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
Layout<Shape<_1, _8>>{} // 8 vals per store
)
);
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
// For accumulation path (split)
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
static constexpr int kGmemThreadsPerRowAccum = kBlockKSmem / kGmemElemsPerLoadAccum;
using GmemLayoutAtomOaccum = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
Stride<Int<kGmemThreadsPerRowAccum>, _1>>;
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
Shape<Int<kNumThreadsSoftmax / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
Stride<Int<kGmemThreadsPerRowAccum>, _1>
>;
using GmemTiledCopyOaccum = decltype(
make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape<_1, _4>>{})); // Val layout, 4 vals per store
Layout<Shape<_1, _4>>{} // 4 vals per store
)
);
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Shared Storage Container for MLA
/// - Re-used union across Q/K/P/O or row sums, etc.
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace flash {
using namespace cute;
template<typename Kernel_traits>
template <typename KernelTraits>
struct SharedStorageMLA {
union {
struct {
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutQ>> smem_q;
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutK> * 2> smem_k; // Double buffer
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutP>> smem_p;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_scale;
cute::array_aligned<typename KernelTraits::Element,
cute::cosize_v<typename KernelTraits::SmemLayoutQ>> smem_q;
cute::array_aligned<typename KernelTraits::Element,
cute::cosize_v<typename KernelTraits::SmemLayoutK> * 2> smem_k; // double buffer
cute::array_aligned<typename KernelTraits::Element,
cute::cosize_v<typename KernelTraits::SmemLayoutP>> smem_p;
cute::array_aligned<typename KernelTraits::ElementAccum,
cute::cosize_v<typename KernelTraits::SmemLayoutRow>> smem_scale;
};
struct {
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_max;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_sum;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutO>> smem_o;
cute::array_aligned<typename KernelTraits::ElementAccum,
cute::cosize_v<typename KernelTraits::SmemLayoutRow>> smem_max;
cute::array_aligned<typename KernelTraits::ElementAccum,
cute::cosize_v<typename KernelTraits::SmemLayoutRow>> smem_sum;
cute::array_aligned<typename KernelTraits::ElementAccum,
cute::cosize_v<typename KernelTraits::SmemLayoutO>> smem_o;
};
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Split, typename SharedStorage, typename AccO, typename Softmax>
__forceinline__ __device__ void store(const Flash_fwd_mla_params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx,
SharedStorage &shared_storage, AccO tOrO, Softmax softmax) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
/// store() Epilogue for partial or non-partial results
/// - Manages writing O/accumulation to global memory + writing out LSE for row block.
////////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename KernelTraits,
bool Split,
typename SharedStorage,
typename AccO,
typename Softmax
>
__forceinline__ __device__
void store(
const Flash_fwd_mla_params &params,
const int batch_id,
const int head_id,
const int m_block,
const int n_split_idx,
SharedStorage &shared_storage,
AccO tOrO,
Softmax softmax
) {
constexpr int kBlockM = KernelTraits::kBlockM;
constexpr int kHeadDimV = KernelTraits::kHeadDimV;
constexpr int kNumThreadsS = KernelTraits::kNumThreadsSoftmax;
using Element = typename KernelTraits::Element;
using ElementAccum = typename KernelTraits::ElementAccum;
using IndexT = typename KernelTraits::IndexT;
const int tidx = threadIdx.x;
typename Kernel_traits::TiledMmaO tiled_mma_o;
typename KernelTraits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
// Epilogue
const int split_offset = __ldg(params.num_splits_ptr + bidb);
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);
// Softmax LSE for final normalization
auto lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);
// Decide if writing ephemeral partial results (float accumulation) or final (Element).
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
using SmemTiledCopyO = std::conditional_t<
!Split,
typename Kernel_traits::SmemCopyAtomO,
typename Kernel_traits::SmemCopyAtomOaccum
>;
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma_o);
// Prepare SMEM for O
Tensor sOaccum = make_tensor(
make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())),
typename KernelTraits::SmemLayoutO{}
);
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(
std::conditional_t<!Split,
typename KernelTraits::SmemCopyAtomO,
typename KernelTraits::SmemCopyAtomOaccum>{},
tiled_mma_o
);
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor rO = flash::convert_type<ElementO>(tOrO);
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor rO = flash::convert_type<ElementO>(tOrO);
Tensor taccOrO = smem_thr_copy_Oaccum.retile_S(rO);
Tensor taccOsO = smem_thr_copy_Oaccum.partition_D(sOaccum);
__syncthreads();
cute::copy(smem_tiled_copy_Oaccum, taccOrO, taccOsO);
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
// Compute GMEM offsets
const IndexT row_offset_o = batch_id * params.o_batch_stride
+ m_block * kBlockM * params.o_row_stride
+ head_id * params.o_head_stride;
const IndexT row_offset_oaccum = (((__ldg(params.num_splits_ptr + batch_id) + n_split_idx)
* params.h + head_id)
* params.seqlen_q + (m_block * kBlockM)) * params.d_v;
const IndexT row_offset_lse = (batch_id * params.h + head_id) * params.seqlen_q + m_block * kBlockM;
const IndexT row_offset_lseaccum = (((__ldg(params.num_splits_ptr + batch_id) + n_split_idx)
* params.h + head_id)
* params.seqlen_q + (m_block * kBlockM));
const index_t row_offset_o = bidb * params.o_batch_stride + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_oaccum = (((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM) * params.d_v;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
const index_t row_offset_lseaccum = ((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
// Prepare GMEM for final or partial O
Tensor gOaccum = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr)
+ (Split ? row_offset_oaccum : row_offset_o)
),
Shape<Int<kBlockM>, Int<kHeadDimV>>{},
make_stride(Split ? kHeadDimV : params.o_row_stride, _1{})
);
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Shape<Int<kBlockM>, Int<kHeadDimV>>{},
make_stride(Split ? kHeadDimV : params.o_row_stride, _1{}));
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + (Split ? row_offset_lseaccum : row_offset_lse)),
Shape<Int<kBlockM>>{}, Stride<_1>{});
// Prepare GMEM LSE
Tensor gLSEaccum = make_tensor(
make_gmem_ptr(
reinterpret_cast<ElementAccum *>(
Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr
) + (Split ? row_offset_lseaccum : row_offset_lse)
),
Shape<Int<kBlockM>>{},
Stride<_1>{}
);
using GmemTiledCopyO = std::conditional_t<!Split, typename Kernel_traits::GmemTiledCopyO, typename Kernel_traits::GmemTiledCopyOaccum>;
GmemTiledCopyO gmem_tiled_copy_Oaccum;
// Tiled copy from SMEM -> GMEM for O
using GmemTiledCopyOAccum = std::conditional_t<
!Split,
typename KernelTraits::GmemTiledCopyO,
typename KernelTraits::GmemTiledCopyOaccum
>;
GmemTiledCopyOAccum gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum);
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
__syncthreads();
if (tidx >= kNThreadsS) { return; }
// If out of range of the "softmax" portion, do not store
if (tidx >= kNumThreadsS) { return; }
// Load from SMEM
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma_o.partition_C(caccO); // ((MMA=4, X), MMA_M, MMA_K=1)
Tensor taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
// Write out the LSE
auto caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{});
auto taccOcO = thr_mma_o.partition_C(caccO);
auto taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row));
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < params.seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
if (row < params.seqlen_q - m_block * kBlockM) {
gLSEaccum(row) = lse(mi);
}
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
// Clear_OOB_K must be false since we don't want to write zeros to gmem
// Identity layout for sO
auto cO = make_identity_tensor(
make_shape(size<0>(sOaccum), size<1>(sOaccum))
);
auto tOcO = gmem_thr_copy_Oaccum.partition_D(cO);
auto tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
// Copy final O back to GMEM
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, params.seqlen_q - m_block * kBlockM
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO,
params.seqlen_q - m_block * kBlockM
);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__forceinline__ __device__ void compute_attn_1rowblock_splitkv_mla(const Flash_fwd_mla_params &params,
const int bidb, const int bidh, const int m_block,
const int n_split_idx, const int seqlen_k,
const int n_block_min, const int n_block_max, const bool NoSplit,
SharedStorage &shared_storage) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreads = Kernel_traits::kNThreads;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
static_assert(kNThreads == 256 and kNThreadsS == 128);
using Element = typename Kernel_traits::Element;
using index_t = typename Kernel_traits::index_t;
////////////////////////////////////////////////////////////////////////////////////////////////////
/// compute_attn_1rowblock_splitkv_mla()
/// - Core logic for Q*K -> S -> Softmax -> S*V -> O
/// - Includes partial accumulation for splits and optional causal masking.
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename KernelTraits, bool IsCausal, typename SharedStorage>
__forceinline__ __device__
void compute_attn_1rowblock_splitkv_mla(
const Flash_fwd_mla_params &params,
const int batch_id,
const int head_id,
const int m_block,
const int n_split_idx,
const int seqlen_k,
const int n_block_min,
const int n_block_max,
const bool no_split,
SharedStorage &shared_storage
) {
constexpr int kBlockM = KernelTraits::kBlockM;
constexpr int kBlockN = KernelTraits::kBlockN;
constexpr int kHeadDim = KernelTraits::kHeadDim;
constexpr int kHeadDimV = KernelTraits::kHeadDimV;
constexpr int kNumThreads = KernelTraits::kNumThreads;
constexpr int kNumThreadsS = KernelTraits::kNumThreadsSoftmax;
using Element = typename KernelTraits::Element;
using IndexT = typename KernelTraits::IndexT;
static_assert(kNumThreads == 256 && kNumThreadsS == 128, "Expected 256 main threads, 128 softmax threads.");
const int tidx = threadIdx.x;
int n_block = n_block_max - 1;
int n_block = n_block_max - 1;
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Kernel_traits::SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutV{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutVtransposed{});
// Smem pointers for Q, K, V, partial S, etc.
Tensor sQ = make_tensor(
make_smem_ptr(shared_storage.smem_q.data()),
typename KernelTraits::SmemLayoutQ{}
);
Tensor sK = make_tensor(
make_smem_ptr(shared_storage.smem_k.data()),
typename KernelTraits::SmemLayoutK{}
);
Tensor sV = make_tensor(
make_smem_ptr(shared_storage.smem_k.data()),
typename KernelTraits::SmemLayoutV{}
);
Tensor sVt = make_tensor(
make_smem_ptr(shared_storage.smem_k.data()),
typename KernelTraits::SmemLayoutVtransposed{}
);
Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Kernel_traits::SmemLayoutP{});
Tensor tPsP = sP(_, tidx % kNThreadsS, _, _);
Tensor sScale_o = make_tensor(make_smem_ptr(shared_storage.smem_scale.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tScale_osScale_o = sScale_o(_, tidx % kNThreadsS);
Tensor sRow_max = make_tensor(make_smem_ptr(shared_storage.smem_max.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_maxsRow_max = sRow_max(_, tidx % kNThreadsS);
Tensor sRow_sum = make_tensor(make_smem_ptr(shared_storage.smem_sum.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_sumsRow_sum = sRow_sum(_, tidx % kNThreadsS);
// Softmax partial
Tensor sP = make_tensor(
make_smem_ptr(shared_storage.smem_p.data()),
typename KernelTraits::SmemLayoutP{}
);
Tensor tPsP = sP(_, tidx % kNumThreadsS, _, _);
typename Kernel_traits::TiledMmaO tiled_mma_o;
// Row-based scale, sum, etc.
Tensor sScale = make_tensor(
make_smem_ptr(shared_storage.smem_scale.data()),
typename KernelTraits::SmemLayoutRow{}
);
Tensor tScale = sScale(_, tidx % kNumThreadsS);
Tensor sRowMax = make_tensor(
make_smem_ptr(shared_storage.smem_max.data()),
typename KernelTraits::SmemLayoutRow{}
);
Tensor tRowMax = sRowMax(_, tidx % kNumThreadsS);
Tensor sRowSum = make_tensor(
make_smem_ptr(shared_storage.smem_sum.data()),
typename KernelTraits::SmemLayoutRow{}
);
Tensor tRowSum = sRowSum(_, tidx % kNumThreadsS);
// Mma for O
typename KernelTraits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt); // (MMA, MMA_K,MMA_N)
Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt);
Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{});
clear(tOrO);
// Combined softmax utility
flash::Softmax<2 * size<1>(tOrO)> softmax;
int warp_group_idx = cutlass::canonical_warp_group_idx();
if (warp_group_idx == 0) {
typename Kernel_traits::TiledMma tiled_mma;
// Warp group logic: warpGroupIdx=0 does Q*K->S, warpGroupIdx=1 does async loads for next iteration
int warpGroupIdx = cutlass::canonical_warp_group_idx();
if (warpGroupIdx == 0) {
// Main matmul Q*K -> S
typename KernelTraits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
Tensor tSrQ = thr_mma.partition_fragment_A(sQ);
Tensor tSrK = thr_mma.partition_fragment_B(sK);
// If n_block is odd => shift for double-buffer
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
constexpr int sKOffset = size(sK);
tSrK.data() += (sKOffset / 8);
tOrVt.data() += (sKOffset / 8);
}
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
#pragma unroll 1
for (int masking_step = n_masking_steps; n_block >= n_block_min; --masking_step, --n_block) {
__syncthreads();
Tensor tSrS = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma, tSrQ, tSrK, tSrS);
const bool is_masking_step = masking_step > 0;
const bool is_first_masking_step = masking_step == n_masking_steps;
if (is_masking_step) {
Tensor cS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});
Tensor tScS = thr_mma.partition_C(cS);
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if constexpr (!Is_causal) { // Just masking based on col
if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) tSrS(i) = -INFINITY;
} else {
// Ensure seqlen_k - 1 - (n_block * kBlockN + col) >= (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
// col <= seqlen_k - 1 - n_block * kBlockN - (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
int row = int(get<0>(tScS(i)));
int col_limit_right = seqlen_k - 1 - n_block * kBlockN - (params.seqlen_q - 1 - (m_block * kBlockM + row)) / params.ngroups;
if (int(get<1>(tScS(i))) > col_limit_right) tSrS(i) = -INFINITY;
}
}
}
// We have key_padding_mask so we'll need to Check_inf
Tensor scale_o = is_first_masking_step
? softmax.template softmax</*Is_first=*/true, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: is_masking_step ?
softmax.template softmax</*Is_first=*/false, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: softmax.template softmax</*Is_first=*/false, /*Check_inf=*//*Is_local=*/false>(tSrS, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(tSrS);
cute::copy(rP, tPsP);
cute::copy(scale_o, tScale_osScale_o);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SReady));
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cute::copy(softmax.row_max, tRow_maxsRow_max);
cute::copy(softmax.row_sum, tRow_sumsRow_sum);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
} else {
const int *block_table = params.block_table + bidb * params.block_table_batch_stride;
int cur_block_table = __ldg(&block_table[n_block]);
const index_t row_offset_q = bidb * params.q_batch_stride + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_Q;
auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx - kNThreadsS);
Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
params.seqlen_q - m_block * kBlockM);
const index_t row_offset_k = (bidh / params.h_h_k_ratio) * params.k_head_stride;
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_K;
auto gmem_thr_copy_K = gmem_tiled_copy_K.get_thread_slice(tidx - kNThreadsS);
Tensor tKgK = gmem_thr_copy_K.partition_S(gK);
Tensor tKsK = gmem_thr_copy_K.partition_D(sK);
Tensor cK = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcK = gmem_thr_copy_K.partition_S(cK); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tKsK.data() = tKsK.data() + sK_offset;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
// We need to clear the sK smem tiles because K is V.
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK,
seqlen_k - n_block * kBlockN);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
if (n_block - 1 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 1]);
}
// We have a loop from n_block_max-1 down to n_block_min
// Need to do “masking step(s)” for partial or causal scenarios.
constexpr int nMaskingSteps = !IsCausal
? 1
: cute::ceil_div(kBlockM, kBlockN) + 1;
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
flash::cp_async_wait<0>();
__syncthreads();
if (n_block - 1 >= n_block_min) {
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tKsK.data() = tKsK.data() + sK_offset;
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/true, /*Is_even_K=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SReady));
if (n_block - 2 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 2]);
}
typename Kernel_traits::TiledMma tiled_mma;
auto tSrS_layout = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}).layout();
Tensor rP = make_tensor<Element>(tSrS_layout);
Tensor scale_o = make_tensor<float>(Shape<_2>{});
cute::copy(tScale_osScale_o, scale_o);
cute::copy(tPsP, rP);
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
cute::copy(tRow_maxsRow_max, softmax.row_max);
cute::copy(tRow_sumsRow_sum, softmax.row_sum);
}
if (NoSplit)
store<Kernel_traits, false>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
else
store<Kernel_traits, true>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__global__ void __launch_bounds__(Kernel_traits::kNThreads, 1, 1)
flash_fwd_splitkv_mla_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kBlockN = Kernel_traits::kBlockN;
const int m_block = blockIdx.x;
const int bidh = blockIdx.y;
const int partition_idx = blockIdx.z;
extern __shared__ char shared_memory[];
auto &shared_storage = *reinterpret_cast<SharedStorage *>(shared_memory);
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr + partition_idx * TileSchedulerMetaDataSize;
int4 tile_scheduler_metadata = __ldg(reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr));
int begin_idx = tile_scheduler_metadata.x;
int begin_seqlen = tile_scheduler_metadata.y;
int end_idx = tile_scheduler_metadata.z;
int end_seqlen = tile_scheduler_metadata.w;
if (begin_idx >= params.b) return;
int begin_n_split_idx = __ldg(tile_scheduler_metadata_ptr + 4);
#pragma unroll 1
for (int batch_id = begin_idx; batch_id <= end_idx; ++batch_id) {
const int n_split_idx = batch_id == begin_idx ? begin_n_split_idx : 0;
const int seqlen_k = __ldg(params.cu_seqlens_k + batch_id);
const int n_block_min = batch_id == begin_idx ? begin_seqlen / kBlockN : 0;
const int n_block_max = batch_id == end_idx ? cute::ceil_div(end_seqlen, kBlockN) : cute::ceil_div(seqlen_k, kBlockN);
const bool NoSplit = n_block_min == 0 && n_block_max == cute::ceil_div(seqlen_k, kBlockN);
if (batch_id > begin_idx) {
__syncthreads(); // Barrier between two tiles.
}
flash::compute_attn_1rowblock_splitkv_mla<Kernel_traits, Is_causal>(params, batch_id, bidh, m_block, n_split_idx, seqlen_k, n_block_min, n_block_max, NoSplit, shared_storage);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Element, typename ElementAccum, typename index_t, int kHeadDimV, int kMaxSplits>
__global__ void __launch_bounds__(256, 1, 1)
flash_fwd_splitkv_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kNThreads = 128;
const int tidx = threadIdx.x;
const int bidx = blockIdx.x;
for (int masking
const int hs = params.h * params.seqlen_q;
const int batch_idx = bidx / hs;
const int hs_idx = bidx % hs;