Initial commit

i
This commit is contained in:
Jiashi Li 2025-02-21 14:31:27 +08:00 committed by ljss
commit 414a2f3eed
17 changed files with 1819 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
build
*.so
*.egg-info/
__pycache__/
dist/

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "csrc/cutlass"]
path = csrc/cutlass
url = https://github.com/NVIDIA/cutlass.git

21
LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 DeepSeek
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

61
README.md Normal file
View File

@ -0,0 +1,61 @@
# FlashMLA
FlashMLA is an efficient MLA decoding kernel for Hopper GPUs, optimized for variable-length sequences serving.
Currently released:
- BF16
- Paged kvcache with block size of 64
## Quick start
### Install
```bash
python setup.py install
```
### Benchmark
```bash
python tests/test_flash_mla.py
```
Achieving up to 3000 GB/s in memory-bound configuration and 580 TFLOPS in computation-bound configuration on H800 SXM5, using CUDA 12.6.
### Usage
```python
from flash_mla import get_mla_metadata, flash_mla_with_kvcache
tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)
for i in range(num_layers):
...
o_i, lse_i = flash_mla_with_kvcache(
q_i, kvcache_i, block_table, cache_seqlens, dv,
tile_scheduler_metadata, num_splits, causal=True,
)
...
```
## Requirements
- Hopper GPUs
- CUDA 12.3 and above
- PyTorch 2.0 and above
## Acknowledgement
FlashMLA is inspired by [FlashAttention 2&3](https://github.com/dao-AILab/flash-attention/) and [cutlass](https://github.com/nvidia/cutlass) projects.
## Citation
```bibtex
@misc{flashmla2025,
title={FlashMLA: Efficient MLA decoding kernel},
author={Jiashi Li},
year={2025},
publisher = {GitHub},
howpublished = {\url{https://github.com/deepseek-ai/FlashMLA}},
}
```

1
csrc/cutlass Submodule

@ -0,0 +1 @@
Subproject commit afa1772203677c5118fcd82537a9c8fefbcc7008

203
csrc/flash_api.cpp Normal file
View File

@ -0,0 +1,203 @@
// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/csrc/flash_attn/flash_api.cpp
#include <torch/python.h>
#include <torch/nn/functional.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cutlass/fast_math.h>
#include "flash_mla.h"
#include "static_switch.h"
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
std::vector<at::Tensor>
get_mla_metadata(
at::Tensor &seqlens_k,
const int num_heads_per_head_k,
const int num_heads_k
) {
// This should match the logic in the MLA kernel.
static constexpr int block_size_m = 64;
static constexpr int block_size_n = 64;
static constexpr int fixed_overhead_num_blocks = 5;
CHECK_DEVICE(seqlens_k);
TORCH_CHECK(seqlens_k.is_contiguous());
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32);
int batch_size = seqlens_k.size(0);
int *seqlens_k_ptr = seqlens_k.data_ptr<int>();
auto options = seqlens_k.options();
auto dprops = at::cuda::getCurrentDeviceProperties();
int sm_count = dprops->multiProcessorCount;
int num_sm_parts = sm_count / num_heads_k / cutlass::ceil_div(num_heads_per_head_k, block_size_m);
auto tile_scheduler_metadata = torch::empty({num_sm_parts, TileSchedulerMetaDataSize}, options);
auto num_splits = torch::empty({batch_size + 1}, options);
int *tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr<int>();
int *num_splits_ptr = num_splits.data_ptr<int>();
at::cuda::CUDAGuard device_guard{(char)seqlens_k.get_device()};
auto stream = at::cuda::getCurrentCUDAStream().stream();
Mla_metadata_params params = {};
params.seqlens_k_ptr = seqlens_k_ptr;
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata_ptr;
params.num_splits_ptr = num_splits_ptr;
params.batch_size = batch_size;
params.block_size_n = block_size_n;
params.fixed_overhead_num_blocks = fixed_overhead_num_blocks;
params.num_sm_parts = num_sm_parts;
get_mla_metadata_func(params, stream);
return {tile_scheduler_metadata, num_splits};
}
std::vector<at::Tensor>
mha_fwd_kvcache_mla(
at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
const at::Tensor &kcache, // num_blocks x page_block_size x num_heads_k x head_size
c10::optional<const at::Tensor> &vcache_, // num_blocks x page_block_size x num_heads_k x head_size_v
const int head_size_v,
const at::Tensor &seqlens_k, // batch_size
const at::Tensor &block_table, // batch_size x max_num_blocks_per_seq
const float softmax_scale,
bool is_causal,
const at::Tensor &tile_scheduler_metadata, // num_sm_parts x TileSchedulerMetaDataSize
const at::Tensor &num_splits // batch_size + 1
) {
auto dprops = at::cuda::getCurrentDeviceProperties();
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
TORCH_CHECK(is_sm90);
at::Tensor vcache = vcache_.has_value() ? vcache_.value() : kcache;
auto q_dtype = q.dtype();
TORCH_CHECK(q_dtype == torch::kBFloat16);
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
CHECK_DEVICE(block_table);
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
const auto sizes = q.sizes();
const int batch_size = sizes[0];
const int seqlen_q_ori = sizes[1];
const int num_heads_ori = sizes[2];
const int head_size = sizes[3];
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
TORCH_CHECK(head_size_v % 32 == 0, "head_size_v should be a multiple of 32");
const int max_num_blocks_per_seq = block_table.size(1);
const int num_blocks = kcache.size(0);
const int page_block_size = kcache.size(1);
const int num_heads_k = kcache.size(2);
TORCH_CHECK(batch_size > 0, "batch size must be postive");
TORCH_CHECK(num_heads_ori % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
if (seqlen_q_ori == 1) { is_causal = false; }
const int ngroups = num_heads_ori / num_heads_k;
const int seqlen_q = seqlen_q_ori * ngroups;
const int num_heads = num_heads_k;
q = q.view({batch_size, seqlen_q_ori, num_heads_k, ngroups, head_size}).transpose(2, 3)
.reshape({batch_size, seqlen_q, num_heads, head_size});
int head_size_k = head_size;
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_k);
if (vcache_.has_value()) { CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_v); }
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
CHECK_DEVICE(seqlens_k);
CHECK_CONTIGUOUS(seqlens_k);
CHECK_SHAPE(seqlens_k, batch_size);
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
auto opts = q.options();
at::Tensor out = torch::empty({batch_size, seqlen_q, num_heads, head_size_v}, opts);
at::Tensor softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
Flash_fwd_mla_params params = {};
// Set the sizes.
params.b = batch_size;
params.seqlen_q = seqlen_q;
params.cu_seqlens_k = seqlens_k.data_ptr<int>();
params.h = num_heads;
params.h_h_k_ratio = num_heads / num_heads_k;
params.ngroups = ngroups;
params.is_causal = is_causal;
params.d = head_size;
params.d_v = head_size_v;
params.scale_softmax = softmax_scale;
params.scale_softmax_log2 = float(softmax_scale * M_LOG2E);
// Set the pointers and strides.
params.q_ptr = q.data_ptr();
params.k_ptr = kcache.data_ptr();
params.v_ptr = vcache.data_ptr();
params.o_ptr = out.data_ptr();
params.softmax_lse_ptr = softmax_lse.data_ptr();
// All stride are in elements, not bytes.
params.q_batch_stride = q.stride(0);
params.k_batch_stride = kcache.stride(0);
params.v_batch_stride = vcache.stride(0);
params.o_batch_stride = out.stride(0);
params.q_row_stride = q.stride(-3);
params.k_row_stride = kcache.stride(-3);
params.v_row_stride = vcache.stride(-3);
params.o_row_stride = out.stride(-3);
params.q_head_stride = q.stride(-2);
params.k_head_stride = kcache.stride(-2);
params.v_head_stride = vcache.stride(-2);
params.o_head_stride = out.stride(-2);
params.block_table = block_table.data_ptr<int>();
params.block_table_batch_stride = block_table.stride(0);
params.page_block_size = page_block_size;
TORCH_CHECK(tile_scheduler_metadata.dtype() == torch::kInt32, "tile_scheduler_metadata must have dtype int32");
TORCH_CHECK(tile_scheduler_metadata.size(1) == TileSchedulerMetaDataSize);
CHECK_DEVICE(tile_scheduler_metadata);
CHECK_CONTIGUOUS(tile_scheduler_metadata);
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr<int>();
params.num_sm_parts = tile_scheduler_metadata.size(0);
TORCH_CHECK(num_splits.dtype() == torch::kInt32, "num_splits must have dtype int32");
CHECK_DEVICE(num_splits);
CHECK_CONTIGUOUS(num_splits);
params.num_splits_ptr = num_splits.data_ptr<int>();
at::Tensor softmax_lse_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q}, opts.dtype(at::kFloat));
at::Tensor out_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q, head_size_v}, opts.dtype(at::kFloat));
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
params.oaccum_ptr = out_accum.data_ptr();
auto stream = at::cuda::getCurrentCUDAStream().stream();
TORCH_CHECK(head_size == 576);
run_mha_fwd_splitkv_mla<cutlass::bfloat16_t, 576>(params, stream);
out = out.view({batch_size, seqlen_q_ori, ngroups, num_heads_k, head_size_v}).transpose(2, 3)
.reshape({batch_size, seqlen_q_ori, num_heads_ori, head_size_v});
softmax_lse = softmax_lse.view({batch_size, num_heads_k, seqlen_q_ori, ngroups}).transpose(2, 3)
.reshape({batch_size, num_heads_ori, seqlen_q_ori});
return {out, softmax_lse};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.doc() = "FlashMLA";
m.def("get_mla_metadata", &get_mla_metadata);
m.def("fwd_kvcache_mla", &mha_fwd_kvcache_mla);
}

View File

@ -0,0 +1,3 @@
#include "flash_fwd_mla_kernel.h"
template void run_mha_fwd_splitkv_mla<cutlass::bfloat16_t, 576>(Flash_fwd_mla_params &params, cudaStream_t stream);

679
csrc/flash_fwd_mla_kernel.h Normal file
View File

@ -0,0 +1,679 @@
#pragma once
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
using namespace cute;
#include "named_barrier.h"
#include "utils.h"
#include "softmax.h"
#include "static_switch.h"
#include "flash_mla.h"
template<typename PrecType, int DIM, int DIM2 = DIM>
constexpr auto getSmemLayoutK() {
constexpr int headSizeBytes = sizeof(PrecType) * DIM;
constexpr int headSizeBytes2 = sizeof(PrecType) * DIM2;
if constexpr (headSizeBytes % 128 == 0 && headSizeBytes2 % 128 == 0) {
return GMMA::Layout_K_SW128_Atom<PrecType>{};
} else if constexpr (headSizeBytes % 64 == 0 && headSizeBytes2 % 64 == 0) {
return GMMA::Layout_K_SW64_Atom<PrecType>{};
} else {
return GMMA::Layout_K_SW32_Atom<PrecType>{};
}
}
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::bfloat16_t, int kHeadDimV_ = 0>
struct Flash_fwd_kernel_traits_mla {
using Element = elem_type;
using ElementAccum = float;
using index_t = int64_t;
static constexpr int kNWarps = kNWarps_;
static constexpr int kNThreads = kNWarps * 32;
static constexpr int kNWarpsS = 4;
static constexpr int kNThreadsS = kNWarpsS * 32;
static constexpr int kBlockM = kBlockM_;
static constexpr int kBlockN = kBlockN_;
static constexpr int kHeadDim = kHeadDim_;
static_assert(kHeadDim % 32 == 0);
static constexpr int kHeadDimV = kHeadDimV_ != 0 ? kHeadDimV_ : kHeadDim;
static_assert(kHeadDimV % 32 == 0);
static_assert(kHeadDimV <= kHeadDim);
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
using TiledMma = decltype(make_tiled_mma(
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
GMMA::Major::K, GMMA::Major::K>(),
Layout<Shape<Int<kNWarpsS / 4>, _1, _1>>{}));
static constexpr int AtomLayoutNO = kNThreads / kNThreadsS;
using TiledMmaO = decltype(make_tiled_mma(
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
GMMA::Major::K, GMMA::Major::MN>(),
Layout<Shape<Int<kNWarpsS / 4>, Int<AtomLayoutNO>, _1>>{}));
using SmemLayoutQ = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim>(),
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
using SmemLayoutK = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
using SmemLayoutV = decltype(tile_to_shape(
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
Shape<Int<kBlockN>, Int<kHeadDimV>>{}));
using SmemLayoutVtransposed = decltype(composition(SmemLayoutV{}, make_layout(Shape<Int<kHeadDimV>, Int<kBlockN>>{}, GenRowMajor{})));
using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNThreadsS>, _1, Int<kBlockN / 8>>>;
using SmemLayoutRow = Layout<Shape<_2, Int<kNThreadsS>>, Stride<_1, _2>>;
using SmemLayoutAtomO = decltype(composition(
Swizzle<kSwizzle, 3, 3>{},
Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}));
using SmemLayoutO = decltype(tile_to_shape(
SmemLayoutAtomO{},
Shape<Int<kBlockM>, Int<kHeadDimV>>{}));
using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
using Gmem_copy_struct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
static constexpr int kNThreadsLoad = kNThreads - kNThreadsS;
static_assert(kNThreadsLoad % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
using GmemLayoutAtom = Layout<
Shape<Int<kNThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopy = decltype(make_tiled_copy(
Copy_Atom<Gmem_copy_struct, Element>{},
GmemLayoutAtom{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
using GmemLayoutAtomO = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
Stride<Int<kGmemThreadsPerRow>, _1>>;
using GmemTiledCopyO = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
GmemLayoutAtomO{},
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
static constexpr int kGmemThreadsPerRowAccum = kBlockKSmem / kGmemElemsPerLoadAccum;
using GmemLayoutAtomOaccum = Layout<
Shape<Int<kNThreadsS / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
Stride<Int<kGmemThreadsPerRowAccum>, _1>>;
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
GmemLayoutAtomOaccum{},
Layout<Shape<_1, _4>>{})); // Val layout, 4 vals per store
};
namespace flash {
using namespace cute;
template<typename Kernel_traits>
struct SharedStorageMLA {
union {
struct {
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutQ>> smem_q;
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutK> * 2> smem_k; // Double buffer
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutP>> smem_p;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_scale;
};
struct {
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_max;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_sum;
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutO>> smem_o;
};
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, bool Split, typename SharedStorage, typename AccO, typename Softmax>
__forceinline__ __device__ void store(const Flash_fwd_mla_params &params, const int bidb, const int bidh, const int m_block, const int n_split_idx,
SharedStorage &shared_storage, AccO tOrO, Softmax softmax) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int tidx = threadIdx.x;
typename Kernel_traits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
// Epilogue
const int split_offset = __ldg(params.num_splits_ptr + bidb);
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
// Partition sO to match the accumulator partitioning
using SmemTiledCopyO = std::conditional_t<
!Split,
typename Kernel_traits::SmemCopyAtomO,
typename Kernel_traits::SmemCopyAtomOaccum
>;
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma_o);
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor rO = flash::convert_type<ElementO>(tOrO);
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
__syncthreads();
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
const index_t row_offset_o = bidb * params.o_batch_stride + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_oaccum = (((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM) * params.d_v;
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
const index_t row_offset_lseaccum = ((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
Shape<Int<kBlockM>, Int<kHeadDimV>>{},
make_stride(Split ? kHeadDimV : params.o_row_stride, _1{}));
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + (Split ? row_offset_lseaccum : row_offset_lse)),
Shape<Int<kBlockM>>{}, Stride<_1>{});
using GmemTiledCopyO = std::conditional_t<!Split, typename Kernel_traits::GmemTiledCopyO, typename Kernel_traits::GmemTiledCopyOaccum>;
GmemTiledCopyO gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
__syncthreads();
if (tidx >= kNThreadsS) { return; }
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor taccOcO = thr_mma_o.partition_C(caccO); // ((MMA=4, X), MMA_M, MMA_K=1)
Tensor taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
if (get<1>(taccOcO_row(0)) == 0) {
#pragma unroll
for (int mi = 0; mi < size(lse); ++mi) {
const int row = get<0>(taccOcO_row(mi));
if (row < params.seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
}
}
// Construct identity layout for sO
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
// Repeat the partitioning with identity layouts
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
// Clear_OOB_K must be false since we don't want to write zeros to gmem
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, params.seqlen_q - m_block * kBlockM
);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__forceinline__ __device__ void compute_attn_1rowblock_splitkv_mla(const Flash_fwd_mla_params &params,
const int bidb, const int bidh, const int m_block,
const int n_split_idx, const int seqlen_k,
const int n_block_min, const int n_block_max, const bool NoSplit,
SharedStorage &shared_storage) {
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
constexpr int kNThreads = Kernel_traits::kNThreads;
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
static_assert(kNThreads == 256 and kNThreadsS == 128);
using Element = typename Kernel_traits::Element;
using index_t = typename Kernel_traits::index_t;
const int tidx = threadIdx.x;
int n_block = n_block_max - 1;
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Kernel_traits::SmemLayoutQ{});
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutK{});
Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutV{});
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutVtransposed{});
Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Kernel_traits::SmemLayoutP{});
Tensor tPsP = sP(_, tidx % kNThreadsS, _, _);
Tensor sScale_o = make_tensor(make_smem_ptr(shared_storage.smem_scale.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tScale_osScale_o = sScale_o(_, tidx % kNThreadsS);
Tensor sRow_max = make_tensor(make_smem_ptr(shared_storage.smem_max.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_maxsRow_max = sRow_max(_, tidx % kNThreadsS);
Tensor sRow_sum = make_tensor(make_smem_ptr(shared_storage.smem_sum.data()), typename Kernel_traits::SmemLayoutRow{});
Tensor tRow_sumsRow_sum = sRow_sum(_, tidx % kNThreadsS);
typename Kernel_traits::TiledMmaO tiled_mma_o;
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt); // (MMA, MMA_K,MMA_N)
Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
clear(tOrO);
flash::Softmax<2 * size<1>(tOrO)> softmax;
int warp_group_idx = cutlass::canonical_warp_group_idx();
if (warp_group_idx == 0) {
typename Kernel_traits::TiledMma tiled_mma;
auto thr_mma = tiled_mma.get_thread_slice(tidx);
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
// We will have at least 1 "masking" iteration.
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
#pragma unroll 1
for (int masking_step = n_masking_steps; n_block >= n_block_min; --masking_step, --n_block) {
__syncthreads();
Tensor tSrS = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma, tSrQ, tSrK, tSrS);
const bool is_masking_step = masking_step > 0;
const bool is_first_masking_step = masking_step == n_masking_steps;
if (is_masking_step) {
Tensor cS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});
Tensor tScS = thr_mma.partition_C(cS);
#pragma unroll
for (int i = 0; i < size(tSrS); ++i) {
if constexpr (!Is_causal) { // Just masking based on col
if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) tSrS(i) = -INFINITY;
} else {
// Ensure seqlen_k - 1 - (n_block * kBlockN + col) >= (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
// col <= seqlen_k - 1 - n_block * kBlockN - (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
int row = int(get<0>(tScS(i)));
int col_limit_right = seqlen_k - 1 - n_block * kBlockN - (params.seqlen_q - 1 - (m_block * kBlockM + row)) / params.ngroups;
if (int(get<1>(tScS(i))) > col_limit_right) tSrS(i) = -INFINITY;
}
}
}
// We have key_padding_mask so we'll need to Check_inf
Tensor scale_o = is_first_masking_step
? softmax.template softmax</*Is_first=*/true, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: is_masking_step ?
softmax.template softmax</*Is_first=*/false, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
: softmax.template softmax</*Is_first=*/false, /*Check_inf=*//*Is_local=*/false>(tSrS, params.scale_softmax_log2);
Tensor rP = flash::convert_type<Element>(tSrS);
cute::copy(rP, tPsP);
cute::copy(scale_o, tScale_osScale_o);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SReady));
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tSrK.data() = tSrK.data() + sK_offset / 8;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cute::copy(softmax.row_max, tRow_maxsRow_max);
cute::copy(softmax.row_sum, tRow_sumsRow_sum);
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
} else {
const int *block_table = params.block_table + bidb * params.block_table_batch_stride;
int cur_block_table = __ldg(&block_table[n_block]);
const index_t row_offset_q = bidb * params.q_batch_stride + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.q_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_Q;
auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx - kNThreadsS);
Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
params.seqlen_q - m_block * kBlockM);
const index_t row_offset_k = (bidh / params.h_h_k_ratio) * params.k_head_stride;
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.k_row_stride, _1{}));
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_K;
auto gmem_thr_copy_K = gmem_tiled_copy_K.get_thread_slice(tidx - kNThreadsS);
Tensor tKgK = gmem_thr_copy_K.partition_S(gK);
Tensor tKsK = gmem_thr_copy_K.partition_D(sK);
Tensor cK = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
Tensor tKcK = gmem_thr_copy_K.partition_S(cK); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
if (n_block % 2 == 1) {
// Double buffer for sK
constexpr int sK_offset = size(sK);
tKsK.data() = tKsK.data() + sK_offset;
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
// We need to clear the sK smem tiles because K is V.
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK,
seqlen_k - n_block * kBlockN);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
if (n_block - 1 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 1]);
}
#pragma unroll 1
for (; n_block >= n_block_min; --n_block) {
flash::cp_async_wait<0>();
__syncthreads();
if (n_block - 1 >= n_block_min) {
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tKsK.data() = tKsK.data() + sK_offset;
const index_t offset_k = cur_block_table * params.k_batch_stride;
tKgK.data() = tKgK.data() + offset_k;
flash::copy</*Is_even_MN=*/true, /*Is_even_K=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK);
tKgK.data() = tKgK.data() + -offset_k;
cute::cp_async_fence();
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SReady));
if (n_block - 2 >= n_block_min) {
cur_block_table = __ldg(&block_table[n_block - 2]);
}
typename Kernel_traits::TiledMma tiled_mma;
auto tSrS_layout = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}).layout();
Tensor rP = make_tensor<Element>(tSrS_layout);
Tensor scale_o = make_tensor<float>(Shape<_2>{});
cute::copy(tScale_osScale_o, scale_o);
cute::copy(tPsP, rP);
flash::rescale_o(tOrO, scale_o);
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
// Double buffer for sK
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
tOrVt.data() = tOrVt.data() + sK_offset / 8;
}
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
cute::copy(tRow_maxsRow_max, softmax.row_max);
cute::copy(tRow_sumsRow_sum, softmax.row_sum);
}
if (NoSplit)
store<Kernel_traits, false>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
else
store<Kernel_traits, true>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
}
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
__global__ void __launch_bounds__(Kernel_traits::kNThreads, 1, 1)
flash_fwd_splitkv_mla_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kBlockN = Kernel_traits::kBlockN;
const int m_block = blockIdx.x;
const int bidh = blockIdx.y;
const int partition_idx = blockIdx.z;
extern __shared__ char shared_memory[];
auto &shared_storage = *reinterpret_cast<SharedStorage *>(shared_memory);
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr + partition_idx * TileSchedulerMetaDataSize;
int4 tile_scheduler_metadata = __ldg(reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr));
int begin_idx = tile_scheduler_metadata.x;
int begin_seqlen = tile_scheduler_metadata.y;
int end_idx = tile_scheduler_metadata.z;
int end_seqlen = tile_scheduler_metadata.w;
if (begin_idx >= params.b) return;
int begin_n_split_idx = __ldg(tile_scheduler_metadata_ptr + 4);
#pragma unroll 1
for (int batch_id = begin_idx; batch_id <= end_idx; ++batch_id) {
const int n_split_idx = batch_id == begin_idx ? begin_n_split_idx : 0;
const int seqlen_k = __ldg(params.cu_seqlens_k + batch_id);
const int n_block_min = batch_id == begin_idx ? begin_seqlen / kBlockN : 0;
const int n_block_max = batch_id == end_idx ? cute::ceil_div(end_seqlen, kBlockN) : cute::ceil_div(seqlen_k, kBlockN);
const bool NoSplit = n_block_min == 0 && n_block_max == cute::ceil_div(seqlen_k, kBlockN);
if (batch_id > begin_idx) {
__syncthreads(); // Barrier between two tiles.
}
flash::compute_attn_1rowblock_splitkv_mla<Kernel_traits, Is_causal>(params, batch_id, bidh, m_block, n_split_idx, seqlen_k, n_block_min, n_block_max, NoSplit, shared_storage);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Element, typename ElementAccum, typename index_t, int kHeadDimV, int kMaxSplits>
__global__ void __launch_bounds__(256, 1, 1)
flash_fwd_splitkv_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
constexpr int kNThreads = 128;
const int tidx = threadIdx.x;
const int bidx = blockIdx.x;
const int hs = params.h * params.seqlen_q;
const int batch_idx = bidx / hs;
const int hs_idx = bidx % hs;
const int split_offset = __ldg(params.num_splits_ptr + batch_idx);
const int actual_num_splits = __ldg(params.num_splits_ptr + batch_idx + 1) - split_offset;
FLASH_DEVICE_ASSERT(actual_num_splits <= kMaxSplits);
if (actual_num_splits == 1) return;
__shared__ ElementAccum sLseScale[kMaxSplits];
const index_t row_offset_lseaccum = split_offset * hs + hs_idx;
const index_t row_offset_lse = bidx;
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lseaccum),
Shape<Int<kMaxSplits>>{}, make_stride(hs));
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
Shape<_1>{}, Stride<_1>{});
int warp_idx = cutlass::canonical_warp_idx_sync();
if (warp_idx == 0) {
constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);
float local_lse[kNLsePerThread];
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + tidx;
local_lse[i] = split < actual_num_splits ? gLSEaccum(split) : -INFINITY;
}
float max_lse = -INFINITY;
for (int i = 0; i < kNLsePerThread; ++i) max_lse = max(max_lse, local_lse[i]);
for (int offset = 16; offset >= 1; offset /= 2) max_lse = max(max_lse, __shfl_xor_sync(uint32_t(-1), max_lse, offset));
max_lse = max_lse == -INFINITY ? 0.0f : max_lse; // In case all local LSEs are -inf
float sum_lse = 0;
for (int i = 0; i < kNLsePerThread; ++i) sum_lse = sum_lse + expf(local_lse[i] - max_lse);
for (int offset = 16; offset >= 1; offset /= 2) sum_lse = sum_lse + __shfl_xor_sync(uint32_t(-1), sum_lse, offset);
float global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? INFINITY : logf(sum_lse) + max_lse;
if (tidx == 0) gLSE(0) = global_lse;
for (int i = 0; i < kNLsePerThread; ++i) {
const int split = i * 32 + tidx;
if (split < actual_num_splits) sLseScale[split] = expf(local_lse[i] - global_lse);
}
}
__syncthreads();
static_assert(kHeadDimV % kNThreads == 0);
constexpr int Elements = kHeadDimV / kNThreads;
const index_t row_offset_oaccum = (split_offset * hs + hs_idx) * kHeadDimV;
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
Shape<Int<kHeadDimV>>{}, Stride<_1>{});
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
Layout<Shape<Int<kNThreads>>>{},
Layout<Shape<Int<Elements>>>{}));
GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
clear(tOrO);
for (int split = 0; split < actual_num_splits; ++split) {
cute::copy(tOgOaccum, tOrOaccum);
ElementAccum lse_scale = sLseScale[split];
for (int i = 0; i < size(tOrO); ++i) {
tOrO(i) += lse_scale * tOrOaccum(i);
}
tOgOaccum.data() = tOgOaccum.data() + hs * kHeadDimV;
}
Tensor rO = flash::convert_type<Element>(tOrO);
const int head_idx = (bidx - batch_idx * hs) / params.seqlen_q;
const int row = bidx - batch_idx * hs - head_idx * params.seqlen_q;
auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride + head_idx * params.o_head_stride + row * params.o_row_stride;
Tensor gO = make_tensor(make_gmem_ptr(o_ptr + tidx * Elements), Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
cute::copy(rO, gO);
}
} // namespace flash
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, typename SharedStorage>
void run_flash_splitkv_fwd_mla(Flash_fwd_mla_params &params, cudaStream_t stream) {
FLASH_ASSERT(params.page_block_size == Kernel_traits::kBlockN);
const int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
auto kernel = &flash::flash_fwd_splitkv_mla_kernel<Kernel_traits, Is_causal, SharedStorage>;
constexpr size_t smem_size = sizeof(SharedStorage);
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
kernel<<<dim3(num_m_block, params.h, params.num_sm_parts), Kernel_traits::kNThreads, smem_size, stream>>>(params);
});
CHECK_CUDA_KERNEL_LAUNCH();
dim3 grid_combine(params.b * params.h * params.seqlen_q);
MLA_NUM_SPLITS_SWITCH(params.num_sm_parts, kMaxSplits, [&] {
auto combine_kernel = &flash::flash_fwd_splitkv_mla_combine_kernel<
typename Kernel_traits::Element, typename Kernel_traits::ElementAccum, typename Kernel_traits::index_t, Kernel_traits::kHeadDimV, kMaxSplits>;
combine_kernel<<<grid_combine, 128, 0, stream>>>(params);
});
CHECK_CUDA_KERNEL_LAUNCH();
}
template<typename T, int Headdim>
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params &params, cudaStream_t stream) {
static_assert(Headdim == 576);
FLASH_ASSERT(params.d_v == 512);
FLASH_ASSERT(params.k_ptr == params.v_ptr); // Shared_KV
using Kernel_traits = Flash_fwd_kernel_traits_mla<576, 64, 64, 8, T, 512>;
run_flash_splitkv_fwd_mla<Kernel_traits, flash::SharedStorageMLA<Kernel_traits>>(params, stream);
}
static constexpr int MaxBatchSize = 4096;
__global__ void __launch_bounds__(256, 1, 1)
get_mla_metadata_kernel(__grid_constant__ const Mla_metadata_params params) {
int *seqlens_k_ptr = params.seqlens_k_ptr;
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr;
int *num_splits_ptr = params.num_splits_ptr;
int batch_size = params.batch_size;
int block_size_n = params.block_size_n;
int fixed_overhead_num_blocks = params.fixed_overhead_num_blocks;
int num_sm_parts = params.num_sm_parts;
__shared__ int num_blocks_shared[MaxBatchSize];
__shared__ int num_splits_shared[MaxBatchSize];
int total_num_blocks = 0;
for (int i = threadIdx.x; i < batch_size; i += 32) {
int num_blocks = cutlass::ceil_div(seqlens_k_ptr[i], block_size_n);
total_num_blocks += num_blocks + fixed_overhead_num_blocks;
num_blocks_shared[i] = num_blocks;
}
for (int offset = 16; offset >= 1; offset /= 2) {
total_num_blocks += __shfl_xor_sync(uint32_t(-1), total_num_blocks, offset);
}
__syncwarp();
if (threadIdx.x == 0) {
int payload = cutlass::ceil_div(total_num_blocks, num_sm_parts) + fixed_overhead_num_blocks;
int now_idx = 0, now_block = 0, now_n_split_idx = 0, cum_num_splits = 0;
num_splits_shared[0] = 0;
for (int i = 0; i < num_sm_parts; ++i) {
int tile_scheduler_metadata0[4], tile_scheduler_metadata1;
tile_scheduler_metadata0[0] = now_idx;
tile_scheduler_metadata0[1] = now_block * block_size_n;
tile_scheduler_metadata1 = now_n_split_idx;
int remain_payload = payload;
while (now_idx < batch_size) {
int num_blocks = num_blocks_shared[now_idx];
int now_remain_blocks = num_blocks - now_block;
if (remain_payload >= now_remain_blocks + fixed_overhead_num_blocks) {
cum_num_splits += now_n_split_idx + 1;
num_splits_shared[now_idx + 1] = cum_num_splits;
remain_payload -= now_remain_blocks + fixed_overhead_num_blocks;
++now_idx;
now_block = 0;
now_n_split_idx = 0;
} else {
if (remain_payload - fixed_overhead_num_blocks > 0) {
now_block += remain_payload - fixed_overhead_num_blocks;
++now_n_split_idx;
remain_payload = 0;
}
break;
}
}
tile_scheduler_metadata0[2] = now_block > 0 ? now_idx : now_idx - 1;
tile_scheduler_metadata0[3] = now_block > 0 ? now_block * block_size_n : seqlens_k_ptr[now_idx - 1];
*reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr + i * TileSchedulerMetaDataSize) = *reinterpret_cast<int4 *>(tile_scheduler_metadata0);
tile_scheduler_metadata_ptr[i * TileSchedulerMetaDataSize + 4] = tile_scheduler_metadata1;
}
FLASH_DEVICE_ASSERT(now_idx == batch_size && now_block == 0 && now_n_split_idx == 0);
}
__syncwarp();
for (int i = threadIdx.x; i <= batch_size; i += 32) {
num_splits_ptr[i] = num_splits_shared[i];
}
}
void get_mla_metadata_func(Mla_metadata_params &params, cudaStream_t stream) {
FLASH_ASSERT(params.batch_size < MaxBatchSize);
get_mla_metadata_kernel<<<1, 32, 0, stream>>>(params);
CHECK_CUDA_KERNEL_LAUNCH();
}

63
csrc/flash_mla.h Normal file
View File

@ -0,0 +1,63 @@
#pragma once
////////////////////////////////////////////////////////////////////////////////////////////////////
struct Flash_fwd_mla_params {
using index_t = int64_t;
int b, seqlen_q, d, d_v;
int h, h_h_k_ratio, ngroups;
bool is_causal;
float scale_softmax, scale_softmax_log2;
int *__restrict__ cu_seqlens_k;
void *__restrict__ q_ptr;
void *__restrict__ k_ptr;
void *__restrict__ v_ptr;
void *__restrict__ o_ptr;
void *__restrict__ softmax_lse_ptr;
index_t q_batch_stride;
index_t k_batch_stride;
index_t v_batch_stride;
index_t o_batch_stride;
index_t q_row_stride;
index_t k_row_stride;
index_t v_row_stride;
index_t o_row_stride;
index_t q_head_stride;
index_t k_head_stride;
index_t v_head_stride;
index_t o_head_stride;
int *__restrict__ block_table;
index_t block_table_batch_stride;
int page_block_size;
int *__restrict__ tile_scheduler_metadata_ptr;
int num_sm_parts;
int *__restrict__ num_splits_ptr;
void *__restrict__ softmax_lseaccum_ptr;
void *__restrict__ oaccum_ptr;
};
static constexpr int TileSchedulerMetaDataSize = 8;
// [begin_idx, begin_seqlen, end_idx, end_seqlen, begin_n_split_idx, _, _, _]
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T, int Headdim>
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params &params, cudaStream_t stream);
struct Mla_metadata_params {
int *__restrict__ seqlens_k_ptr;
int *__restrict__ tile_scheduler_metadata_ptr;
int *__restrict__ num_splits_ptr;
int batch_size;
int block_size_n;
int fixed_overhead_num_blocks;
int num_sm_parts;
};
void get_mla_metadata_func(Mla_metadata_params &params, cudaStream_t stream);

15
csrc/named_barrier.h Normal file
View File

@ -0,0 +1,15 @@
#pragma once
#include "cutlass/barrier.h"
namespace flash {
////////////////////////////////////////////////////////////////////////////////////////////////////
// Enumerates the reserved named barriers to avoid potential conflicts
enum class NamedBarriers {
SReady = 1,
SoftmaxReady = 2,
};
} // flash

197
csrc/softmax.h Normal file
View File

@ -0,0 +1,197 @@
// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/csrc/flash_attn/src/softmax.h
#pragma once
#include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/numeric_types.h>
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); mi++) {
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
summary(mi) = op(summary(mi), tensor(mi, ni));
}
}
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
#pragma unroll
for (int i = 0; i < size(dst); i++){
dst(i) = Allreduce<4>::run(src(i), op);
}
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
thread_reduce_<zero_init>(tensor, summary, op);
quad_allreduce_(summary, summary, op);
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
MaxOp<float> max_op;
reduce_<zero_init>(tensor, max, max_op);
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
SumOp<float> sum_op;
thread_reduce_<zero_init>(tensor, sum, sum_op);
}
// Apply the exp to all the elements.
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__forceinline__ __device__ auto scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
// If we don't have float around M_LOG2E the multiplication is done in fp64.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
// The following macro will disable the use of fma.
// See: https://github.com/pytorch/pytorch/issues/121558 for more details
// This macro is set in PyTorch and not FlashAttention
#ifdef UNFUSE_FMA
tensor(mi, ni) = exp2f(__fmul_rn(tensor(mi, ni), scale) - max_scaled);
#else
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
#endif
}
}
return tensor;
}
// Apply the exp to all the elements.
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
MaxOp<float> max_op;
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
max(mi) = max_op(max(mi), tensor(mi, ni));
}
max(mi) = Allreduce<4>::run(max(mi), max_op);
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
sum(mi) = 0;
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
sum(mi) += tensor(mi, ni);
}
SumOp<float> sum_op;
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
}
}
template<typename Tensor0, typename Tensor1>
__forceinline__ __device__ void rescale_o(Tensor0 &acc_o, Tensor1 &scale_o) {
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
#pragma unroll
for (int mi = 0; mi < size(scale_o); ++mi) {
#pragma unroll
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale_o(mi); }
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int kNRows>
struct Softmax {
using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
TensorT row_max, row_sum;
__forceinline__ __device__ Softmax() {};
template<bool Is_first, bool Check_inf=false, typename Tensor0>
__forceinline__ __device__ TensorT softmax(Tensor0 &acc_s, float softmax_scale_log2) {
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
static_assert(decltype(size<0>(scores))::value == kNRows);
TensorT scale_o;
clear(scale_o);
if (Is_first) {
flash::template reduce_max</*zero_init=*/true>(scores, row_max);
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
flash::reduce_sum</*zero_init=*/true>(scores, row_sum);
} else {
Tensor scores_max_prev = make_fragment_like(row_max);
cute::copy(row_max, scores_max_prev);
flash::template reduce_max</*zero_init=*/false>(scores, row_max);
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
#pragma unroll
for (int mi = 0; mi < size(row_max); ++mi) {
float scores_max_cur = !Check_inf
? row_max(mi)
: (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
scale_o(mi) = scores_scale;
row_sum(mi) *= scores_scale;
}
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
// We don't do the reduce across threads here since we don't need to use the row_sum.
// We do that reduce at the end when we need to normalize the softmax.
flash::reduce_sum</*zero_init=*/false>(scores, row_sum);
}
return scale_o;
};
template<bool Is_dropout=false, bool Split=false, typename Tensor0>
__forceinline__ __device__ TensorT normalize_softmax_lse(Tensor0 &acc_o, float softmax_scale, float rp_dropout=1.0) {
SumOp<float> sum_op;
quad_allreduce_(row_sum, row_sum, sum_op);
TensorT lse = make_fragment_like(row_sum);
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
#pragma unroll
for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
float sum = row_sum(mi);
float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : row_max(mi) * softmax_scale + __logf(sum);
float scale = !Is_dropout ? inv_sum : inv_sum * rp_dropout;
#pragma unroll
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
}
return lse;
};
};
} // namespace flash

65
csrc/static_switch.h Normal file
View File

@ -0,0 +1,65 @@
#pragma once
#define CHECK_CUDA(call) \
do { \
cudaError_t status_ = call; \
if (status_ != cudaSuccess) { \
fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_)); \
exit(1); \
} \
} while(0)
#define CHECK_CUDA_KERNEL_LAUNCH() CHECK_CUDA(cudaGetLastError())
#define FLASH_ASSERT(cond) \
do { \
if (not (cond)) { \
fprintf(stderr, "Assertion failed (%s:%d): %s\n", __FILE__, __LINE__, #cond); \
exit(1); \
} \
} while(0)
#define FLASH_DEVICE_ASSERT(cond) \
do { \
if (not (cond)) { \
printf("Assertion failed (%s:%d): %s\n", __FILE__, __LINE__, #cond); \
asm("trap;"); \
} \
} while(0)
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
[&] { \
if (COND) { \
constexpr static bool CONST_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr static bool CONST_NAME = false; \
return __VA_ARGS__(); \
} \
}()
#define MLA_NUM_SPLITS_SWITCH(NUM_SPLITS, NAME, ...) \
[&] { \
if (NUM_SPLITS <= 32) { \
constexpr static int NAME = 32; \
return __VA_ARGS__(); \
} else if (NUM_SPLITS <= 64) { \
constexpr static int NAME = 64; \
return __VA_ARGS__(); \
} else if (NUM_SPLITS <= 96) { \
constexpr static int NAME = 96; \
return __VA_ARGS__(); \
} else if (NUM_SPLITS <= 128) { \
constexpr static int NAME = 128; \
return __VA_ARGS__(); \
} else if (NUM_SPLITS <= 160) { \
constexpr static int NAME = 160; \
return __VA_ARGS__(); \
} else { \
FLASH_ASSERT(false); \
} \
}()

238
csrc/utils.h Normal file
View File

@ -0,0 +1,238 @@
// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/utils.h
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <cuda_bf16.h>
#include <cute/tensor.hpp>
#include <cutlass/array.h>
#include <cutlass/cutlass.h>
#include <cutlass/numeric_conversion.h>
#include <cutlass/numeric_types.h>
////////////////////////////////////////////////////////////////////////////////////////////////////
namespace flash {
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct MaxOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
};
template <>
struct MaxOp<float> {
// This is slightly faster
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct SumOp {
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int THREADS>
struct Allreduce {
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
constexpr int OFFSET = THREADS / 2;
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
return Allreduce<OFFSET>::run(x, op);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
struct Allreduce<2> {
template<typename T, typename Operator>
static __device__ __forceinline__ T run(T x, Operator &op) {
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
return x;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool zero_init=false, int wg_wait=0, bool arrive=true, bool commit=true, typename Tensor0, typename Tensor1, typename Tensor2, typename TiledMma>
__forceinline__ __device__ void gemm(TiledMma &tiled_mma, Tensor0 const &tCrA, Tensor1 const &tCrB, Tensor2 &tCrC) {
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
// Need to cast away const on tCrA since warpgroup_fence_operand doesn't take const
if constexpr (Is_RS) { cute::warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
warpgroup_fence_operand(tCrC);
if constexpr (arrive) {
warpgroup_arrive();
}
if constexpr (zero_init) {
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
// Unroll the K mode manually to set scale D to 1
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
} else {
// cute::gemm(tiled_mma, tCrA, tCrB, tCrC);
// Unroll the K mode manually to set scale D to 1
CUTLASS_PRAGMA_UNROLL
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
}
}
if constexpr (commit) {
warpgroup_commit_batch();
}
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
warpgroup_fence_operand(tCrC);
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
// For SM90, convert acc_layout from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
template<bool Transposed=false, typename Layout0>
__forceinline__ __device__ auto convert_layout_acc_rowcol(Layout0 acc_layout) {
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
static_assert(decltype(rank(acc_layout))::value == 3);
auto l = acc_layout;
if constexpr (!Transposed) {
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
} else {
return make_layout(make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
}
} else { // SM80
static_assert(decltype(size<0>(acc_layout))::value == 4);
static_assert(decltype(rank(acc_layout))::value == 3);
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
if constexpr (!Transposed) {
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
} else {
return make_layout(make_layout(get<0, 0>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
// if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
// For SM90, FP16/BF16, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((2, 2, 2), MMA_M, (N / 16, MMA_N))
// For SM90, FP8, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((4, 2, 2), MMA_M, (N / 32, MMA_N))
template<typename MMA_Traits, typename Layout0>
__forceinline__ __device__ auto convert_layout_acc_Aregs(Layout0 acc_layout) {
using X = Underscore;
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
static_assert(decltype(rank(acc_layout))::value == 3);
static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
if constexpr (sizeof(typename MMA_Traits::ValTypeA) == 2) {
auto l = logical_divide(get<0, 2>(acc_layout), Tile<_2>{}); // ((2, N / 16))
return make_layout(make_layout(get<0, 0>(acc_layout), get<0, 1>(acc_layout), get<0, 0>(l)), get<1>(acc_layout), coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
} else {
static_assert(sizeof(typename MMA_Traits::ValTypeA) == 1);
static_assert(decltype(stride<0, 0>(acc_layout))::value == 1);
static_assert(decltype(stride<0, 1>(acc_layout))::value == 2);
auto l = logical_divide(get<0, 2>(acc_layout), Tile<Layout<Shape<_2, _2>>>{}); // (((2, 2), N / 32))
// This combines the first two modes (<0, 0> and <0, 1>) into one mode.
// Will require register shuffling later to be correct.
return make_layout(make_layout(Layout<_4>{}, get<0, 0, 0>(l), get<0, 0, 1>(l)),
get<1>(acc_layout),
coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout)))); // ((4, 2, 2), MMA_M, N / 32 * MMA_N)
// This combination is right but doesn't work with register shuffling.
// return make_layout(make_layout(coalesce(make_layout(get<0, 0>(acc_layout), get<0, 0, 0>(l))), get<0, 1>(acc_layout), get<0, 0, 1>(l)),
// get<1>(acc_layout),
// coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
}
} else { // SM80
static_assert(decltype(size<0>(acc_layout))::value == 4);
static_assert(decltype(rank(acc_layout))::value == 3);
constexpr int mma_shape_K = get<2>(typename MMA_Traits::Shape_MNK{});
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
if constexpr (mma_shape_K == 8) {
return acc_layout;
} else {
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
}
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename To_type, typename Engine, typename Layout>
__forceinline__ __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
using From_type = typename Engine::value_type;
constexpr int numel = decltype(size(tensor))::value;
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
// HACK: this requires tensor to be "contiguous"
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Blocks until all but N previous cp.async.commit_group operations have committed.
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
// (which is equivalent to commit_group then wait_group 0).
// Instead we just call cp.async.wait_group 0, which is slightly faster.
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
template <int N>
CUTE_HOST_DEVICE
void cp_async_wait() {
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
__forceinline__ __device__ void copy(TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
// There's no case where !Clear_OOB_K && Clear_OOB_MN
static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
#pragma unroll
for (int m = 0; m < size<1>(S); ++m) {
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
#pragma unroll
for (int k = 0; k < size<2>(S); ++k) {
if (Is_even_K || predicate_K(k)) {
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
} else if (Clear_OOB_K) {
cute::clear(D(_, m, k));
}
}
} else if (Clear_OOB_MN) {
cute::clear(D(_, m, _));
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash

6
flash_mla/__init__.py Normal file
View File

@ -0,0 +1,6 @@
__version__ = "1.0.0"
from flash_mla.flash_mla_interface import (
get_mla_metadata,
flash_mla_with_kvcache,
)

View File

@ -0,0 +1,67 @@
from typing import Optional, Tuple
import torch
import flash_mla_cuda
def get_mla_metadata(
cache_seqlens: torch.Tensor,
num_heads_per_head_k: int,
num_heads_k: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
cache_seqlens: (batch_size), dtype torch.int32.
num_heads_per_head_k: Equals to seq_len_q * num_heads_q // num_heads_k.
num_heads_k: num_heads_k.
Return:
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), dtype torch.int32.
num_splits: (batch_size + 1), dtype torch.int32.
"""
return flash_mla_cuda.get_mla_metadata(cache_seqlens, num_heads_per_head_k, num_heads_k)
def flash_mla_with_kvcache(
q: torch.Tensor,
k_cache: torch.Tensor,
block_table: torch.Tensor,
cache_seqlens: torch.Tensor,
head_dim_v: int,
tile_scheduler_metadata: torch.Tensor,
num_splits: torch.Tensor,
softmax_scale: Optional[float] = None,
causal: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Arguments:
q: (batch_size, seq_len_q, num_heads_q, head_dim).
k_cache: (num_blocks, page_block_size, num_heads_k, head_dim).
block_table: (batch_size, max_num_blocks_per_seq), torch.int32.
cache_seqlens: (batch_size), torch.int32.
head_dim_v: Head_dim of v.
tile_scheduler_metadata: (num_sm_parts, TileSchedulerMetaDataSize), torch.int32, return by get_mla_metadata.
num_splits: (batch_size + 1), torch.int32, return by get_mla_metadata.
softmax_scale: float. The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim).
causal: bool. Whether to apply causal attention mask.
Return:
out: (batch_size, seq_len_q, num_heads_q, head_dim_v).
softmax_lse: (batch_size, num_heads_q, seq_len_q), torch.float32.
"""
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
out, softmax_lse = flash_mla_cuda.fwd_kvcache_mla(
q,
k_cache,
None,
head_dim_v,
cache_seqlens,
block_table,
softmax_scale,
causal,
tile_scheduler_metadata,
num_splits,
)
return out, softmax_lse

78
setup.py Normal file
View File

@ -0,0 +1,78 @@
import os
from pathlib import Path
from datetime import datetime
import subprocess
from setuptools import setup, find_packages
from torch.utils.cpp_extension import (
BuildExtension,
CUDAExtension,
)
def append_nvcc_threads(nvcc_extra_args):
nvcc_threads = os.getenv("NVCC_THREADS") or "32"
return nvcc_extra_args + ["--threads", nvcc_threads]
subprocess.run(["git", "submodule", "update", "--init", "csrc/cutlass"])
cc_flag = []
cc_flag.append("-gencode")
cc_flag.append("arch=compute_90a,code=sm_90a")
this_dir = os.path.dirname(os.path.abspath(__file__))
ext_modules = []
ext_modules.append(
CUDAExtension(
name="flash_mla_cuda",
sources=[
"csrc/flash_api.cpp",
"csrc/flash_fwd_mla_bf16_sm90.cu",
],
extra_compile_args={
"cxx": ["-O3", "-std=c++17", "-DNDEBUG", "-Wno-deprecated-declarations"],
"nvcc": append_nvcc_threads(
[
"-O3",
"-std=c++17",
"-DNDEBUG",
"-Wno-deprecated-declarations",
"-U__CUDA_NO_HALF_OPERATORS__",
"-U__CUDA_NO_HALF_CONVERSIONS__",
"-U__CUDA_NO_HALF2_OPERATORS__",
"-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
"--expt-relaxed-constexpr",
"--expt-extended-lambda",
"--use_fast_math",
"--ptxas-options=-v,--register-usage-level=10"
]
+ cc_flag
),
},
include_dirs=[
Path(this_dir) / "csrc",
Path(this_dir) / "csrc" / "cutlass" / "include",
],
)
)
try:
cmd = ['git', 'rev-parse', '--short', 'HEAD']
rev = '+' + subprocess.check_output(cmd).decode('ascii').rstrip()
except Exception as _:
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d-%H-%M-%S")
rev = '+' + date_time_str
setup(
name="flash_mla",
version="1.0.0" + rev,
packages=find_packages(include=['flash_mla']),
ext_modules=ext_modules,
cmdclass={"build_ext": BuildExtension},
)

114
tests/test_flash_mla.py Normal file
View File

@ -0,0 +1,114 @@
import math
import random
import torch
import triton
from flash_mla import get_mla_metadata, flash_mla_with_kvcache
def scaled_dot_product_attention(query, key, value, is_causal=False):
query = query.float()
key = key.float()
value = value.float()
key = key.repeat_interleave(h_q // h_kv, dim=0)
value = value.repeat_interleave(h_q // h_kv, dim=0)
attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
if is_causal:
s_q = query.shape[-2]
s_k = key.shape[-2]
attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
attn_weight += attn_bias
lse = attn_weight.logsumexp(dim=-1)
attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
return attn_weight @ value, lse
def cal_diff(x: torch.Tensor, y: torch.Tensor, name: str) -> None:
x, y = x.double(), y.double()
RMSE = ((x - y) * (x - y)).mean().sqrt().item()
cos_diff = 1 - 2 * (x * y).sum().item() / max((x * x + y * y).sum().item(), 1e-12)
amax_diff = (x - y).abs().max().item()
# print(f"{name}: {cos_diff=}, {RMSE=}, {amax_diff=}")
assert cos_diff < 1e-5
@torch.inference_mode()
def test_flash_mla(b, s_q, mean_sk, h_q, h_kv, d, dv, causal, varlen):
print(f"{b=}, {s_q=}, {mean_sk=}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {varlen=}")
cache_seqlens = torch.full((b,), mean_sk, dtype=torch.int32)
if varlen:
for i in range(b):
cache_seqlens[i] = max(random.normalvariate(mean_sk, mean_sk / 2), s_q)
total_seqlens = cache_seqlens.sum().item()
mean_seqlens = cache_seqlens.float().mean().int().item()
max_seqlen = cache_seqlens.max().item()
max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
# print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")
q = torch.randn(b, s_q, h_q, d)
block_size = 64
block_table = torch.arange(b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
for i in range(b):
blocked_k.view(b, max_seqlen_pad, h_kv, d)[i, cache_seqlens[i].item():] = float("nan")
blocked_v = blocked_k[..., :dv]
tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)
def flash_mla():
return flash_mla_with_kvcache(
q, blocked_k, block_table, cache_seqlens, dv,
tile_scheduler_metadata, num_splits, causal=causal,
)
def ref_mla():
out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
for i in range(b):
begin = i * max_seqlen_pad
end = begin + cache_seqlens[i]
O, LSE = scaled_dot_product_attention(
q[i].transpose(0, 1),
blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
is_causal=causal,
)
out[i] = O.transpose(0, 1)
lse[i] = LSE
return out, lse
out_flash, lse_flash = flash_mla()
out_torch, lse_torch = ref_mla()
cal_diff(out_flash, out_torch, "out")
cal_diff(lse_flash, lse_torch, "lse")
t = triton.testing.do_bench(flash_mla, fast_flush=False)
FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (torch.finfo(dtype).bits // 8)
print(f"{t:.3f} ms, {FLOPS / 10 ** 9 / t:.0f} TFLOPS, {bytes / 10 ** 6 / t:.0f} GB/s")
if __name__ == "__main__":
dtype = torch.bfloat16
device = torch.device("cuda:0")
torch.set_default_dtype(dtype)
torch.set_default_device(device)
torch.cuda.set_device(device)
torch.manual_seed(0)
random.seed(0)
h_kv = 1
d, dv = 576, 512
causal = True
for b in [128]:
for s in [4096, 8192]:
for h_q in [16, 32, 64, 128]: # TP = 8, 4, 2, 1
for s_q in [1, 2]: # MTP = 1, 2
for varlen in [False, True]:
test_flash_mla(b, s_q, s, h_q, h_kv, d, dv, causal, varlen)