mirror of
https://github.com/deepseek-ai/FlashMLA
synced 2025-06-26 18:15:54 +00:00
Performance optimization for compute-bound cases
This commit is contained in:
parent
063ffa8ec1
commit
287061ec34
1
.gitignore
vendored
1
.gitignore
vendored
@ -5,3 +5,4 @@ __pycache__/
|
||||
dist/
|
||||
*perf.csv
|
||||
*.png
|
||||
/.vscode
|
||||
|
||||
@ -10,8 +10,10 @@
|
||||
|
||||
#include <cutlass/fast_math.h>
|
||||
|
||||
#include "flash_mla.h"
|
||||
#include "static_switch.h"
|
||||
#include "kernels/config.h"
|
||||
#include "kernels/get_mla_metadata.h"
|
||||
#include "kernels/mla_combine.h"
|
||||
#include "kernels/splitkv_mla.h"
|
||||
|
||||
#define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
|
||||
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
|
||||
@ -23,11 +25,6 @@ get_mla_metadata(
|
||||
const int num_heads_per_head_k,
|
||||
const int num_heads_k
|
||||
) {
|
||||
// This should match the logic in the MLA kernel.
|
||||
static constexpr int block_size_m = 64;
|
||||
static constexpr int block_size_n = 64;
|
||||
static constexpr int fixed_overhead_num_blocks = 5;
|
||||
|
||||
CHECK_DEVICE(seqlens_k);
|
||||
TORCH_CHECK(seqlens_k.is_contiguous());
|
||||
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32);
|
||||
@ -38,7 +35,7 @@ get_mla_metadata(
|
||||
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
int sm_count = dprops->multiProcessorCount;
|
||||
int num_sm_parts = sm_count / num_heads_k / cutlass::ceil_div(num_heads_per_head_k, block_size_m);
|
||||
int num_sm_parts = sm_count / num_heads_k / cutlass::ceil_div(num_heads_per_head_k, Config::BLOCK_SIZE_M);
|
||||
|
||||
auto tile_scheduler_metadata = torch::empty({num_sm_parts, TileSchedulerMetaDataSize}, options);
|
||||
auto num_splits = torch::empty({batch_size + 1}, options);
|
||||
@ -52,10 +49,10 @@ get_mla_metadata(
|
||||
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata_ptr;
|
||||
params.num_splits_ptr = num_splits_ptr;
|
||||
params.batch_size = batch_size;
|
||||
params.block_size_n = block_size_n;
|
||||
params.fixed_overhead_num_blocks = fixed_overhead_num_blocks;
|
||||
params.block_size_n = Config::PAGE_BLOCK_SIZE;
|
||||
params.fixed_overhead_num_blocks = Config::FIXED_OVERHEAD_NUM_BLOCKS;
|
||||
params.num_sm_parts = num_sm_parts;
|
||||
get_mla_metadata_func(params, stream);
|
||||
run_get_mla_metadata_kernel(params, stream);
|
||||
|
||||
return {tile_scheduler_metadata, num_splits};
|
||||
}
|
||||
@ -64,7 +61,6 @@ std::vector<at::Tensor>
|
||||
mha_fwd_kvcache_mla(
|
||||
at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
|
||||
const at::Tensor &kcache, // num_blocks x page_block_size x num_heads_k x head_size
|
||||
std::optional<const at::Tensor> &vcache_, // num_blocks x page_block_size x num_heads_k x head_size_v
|
||||
const int head_size_v,
|
||||
const at::Tensor &seqlens_k, // batch_size
|
||||
const at::Tensor &block_table, // batch_size x max_num_blocks_per_seq
|
||||
@ -73,138 +69,141 @@ mha_fwd_kvcache_mla(
|
||||
const at::Tensor &tile_scheduler_metadata, // num_sm_parts x TileSchedulerMetaDataSize
|
||||
const at::Tensor &num_splits // batch_size + 1
|
||||
) {
|
||||
// Check the architecture
|
||||
auto dprops = at::cuda::getCurrentDeviceProperties();
|
||||
bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
|
||||
TORCH_CHECK(is_sm90);
|
||||
|
||||
at::Tensor vcache = vcache_.has_value() ? vcache_.value() : kcache;
|
||||
|
||||
// Check data types
|
||||
auto q_dtype = q.dtype();
|
||||
TORCH_CHECK(q_dtype == torch::kBFloat16 || q_dtype == torch::kHalf);
|
||||
TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
|
||||
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
|
||||
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
||||
TORCH_CHECK(tile_scheduler_metadata.dtype() == torch::kInt32, "tile_scheduler_metadata must have dtype int32");
|
||||
TORCH_CHECK(num_splits.dtype() == torch::kInt32, "num_splits must have dtype int32");
|
||||
|
||||
CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
|
||||
// Check device
|
||||
CHECK_DEVICE(q);
|
||||
CHECK_DEVICE(kcache);
|
||||
CHECK_DEVICE(seqlens_k);
|
||||
CHECK_DEVICE(block_table);
|
||||
CHECK_DEVICE(tile_scheduler_metadata);
|
||||
CHECK_DEVICE(num_splits);
|
||||
|
||||
// Check layout
|
||||
TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
||||
TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
||||
TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
|
||||
|
||||
CHECK_DEVICE(block_table);
|
||||
TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
|
||||
CHECK_CONTIGUOUS(seqlens_k);
|
||||
TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
|
||||
CHECK_CONTIGUOUS(tile_scheduler_metadata);
|
||||
CHECK_CONTIGUOUS(num_splits);
|
||||
|
||||
const auto sizes = q.sizes();
|
||||
const int batch_size = sizes[0];
|
||||
const int seqlen_q_ori = sizes[1];
|
||||
const int num_heads_ori = sizes[2];
|
||||
const int head_size = sizes[3];
|
||||
TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
|
||||
TORCH_CHECK(head_size_v % 32 == 0, "head_size_v should be a multiple of 32");
|
||||
const int num_heads_q = sizes[2];
|
||||
const int head_size_k = sizes[3];
|
||||
TORCH_CHECK(head_size_k == 576, "Only head_size_k == 576 is supported");
|
||||
TORCH_CHECK(head_size_v == 512, "Only head_size_v == 576 is supported");
|
||||
|
||||
const int max_num_blocks_per_seq = block_table.size(1);
|
||||
const int num_blocks = kcache.size(0);
|
||||
const int page_block_size = kcache.size(1);
|
||||
const int num_heads_k = kcache.size(2);
|
||||
TORCH_CHECK(batch_size > 0, "batch size must be postive");
|
||||
TORCH_CHECK(num_heads_ori % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
||||
TORCH_CHECK(num_heads_q % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
|
||||
|
||||
if (seqlen_q_ori == 1) { is_causal = false; }
|
||||
|
||||
const int ngroups = num_heads_ori / num_heads_k;
|
||||
const int seqlen_q = seqlen_q_ori * ngroups;
|
||||
const int num_q_heads_per_hk = num_heads_q / num_heads_k;
|
||||
const int q_seq_per_hk = seqlen_q_ori * num_q_heads_per_hk;
|
||||
const int num_heads = num_heads_k;
|
||||
q = q.view({batch_size, seqlen_q_ori, num_heads_k, ngroups, head_size}).transpose(2, 3)
|
||||
.reshape({batch_size, seqlen_q, num_heads, head_size});
|
||||
q = q.view({batch_size, seqlen_q_ori, num_heads_k, num_q_heads_per_hk, head_size_k}).transpose(2, 3)
|
||||
.reshape({batch_size, q_seq_per_hk, num_heads, head_size_k});
|
||||
|
||||
int head_size_k = head_size;
|
||||
CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
|
||||
CHECK_SHAPE(q, batch_size, q_seq_per_hk, num_heads, head_size_k);
|
||||
CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_k);
|
||||
if (vcache_.has_value()) { CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_v); }
|
||||
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
||||
|
||||
|
||||
TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
|
||||
CHECK_DEVICE(seqlens_k);
|
||||
CHECK_CONTIGUOUS(seqlens_k);
|
||||
CHECK_SHAPE(seqlens_k, batch_size);
|
||||
CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
|
||||
TORCH_CHECK(tile_scheduler_metadata.size(1) == TileSchedulerMetaDataSize);
|
||||
CHECK_SHAPE(num_splits, batch_size+1);
|
||||
|
||||
at::cuda::CUDAGuard device_guard{(char)q.get_device()};
|
||||
|
||||
auto opts = q.options();
|
||||
at::Tensor out = torch::empty({batch_size, seqlen_q, num_heads, head_size_v}, opts);
|
||||
at::Tensor softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
||||
at::Tensor out = torch::empty({batch_size, q_seq_per_hk, num_heads, head_size_v}, opts);
|
||||
at::Tensor softmax_lse = torch::empty({batch_size, num_heads, q_seq_per_hk}, opts.dtype(at::kFloat));
|
||||
CHECK_CONTIGUOUS(softmax_lse);
|
||||
|
||||
Flash_fwd_mla_params params = {};
|
||||
// Set the sizes.
|
||||
params.b = batch_size;
|
||||
params.seqlen_q = seqlen_q;
|
||||
params.cu_seqlens_k = seqlens_k.data_ptr<int>();
|
||||
params.h = num_heads;
|
||||
params.h_h_k_ratio = num_heads / num_heads_k;
|
||||
params.ngroups = ngroups;
|
||||
params.s_q = seqlen_q_ori;
|
||||
params.q_seq_per_hk = q_seq_per_hk;
|
||||
params.seqlens_k_ptr = seqlens_k.data_ptr<int>();
|
||||
params.h_q = num_heads_q;
|
||||
params.h_k = num_heads_k;
|
||||
params.num_blocks = num_blocks;
|
||||
params.q_head_per_hk = num_q_heads_per_hk;
|
||||
params.is_causal = is_causal;
|
||||
params.d = head_size;
|
||||
params.d = head_size_k;
|
||||
params.d_v = head_size_v;
|
||||
params.scale_softmax = softmax_scale;
|
||||
params.scale_softmax_log2 = float(softmax_scale * M_LOG2E);
|
||||
// Set the pointers and strides.
|
||||
params.q_ptr = q.data_ptr();
|
||||
params.k_ptr = kcache.data_ptr();
|
||||
params.v_ptr = vcache.data_ptr();
|
||||
params.o_ptr = out.data_ptr();
|
||||
params.softmax_lse_ptr = softmax_lse.data_ptr();
|
||||
// All stride are in elements, not bytes.
|
||||
params.q_batch_stride = q.stride(0);
|
||||
params.k_batch_stride = kcache.stride(0);
|
||||
params.v_batch_stride = vcache.stride(0);
|
||||
params.o_batch_stride = out.stride(0);
|
||||
params.q_row_stride = q.stride(-3);
|
||||
params.k_row_stride = kcache.stride(-3);
|
||||
params.v_row_stride = vcache.stride(-3);
|
||||
params.o_row_stride = out.stride(-3);
|
||||
params.q_head_stride = q.stride(-2);
|
||||
params.k_head_stride = kcache.stride(-2);
|
||||
params.v_head_stride = vcache.stride(-2);
|
||||
params.o_head_stride = out.stride(-2);
|
||||
|
||||
params.block_table = block_table.data_ptr<int>();
|
||||
params.block_table_batch_stride = block_table.stride(0);
|
||||
params.page_block_size = page_block_size;
|
||||
|
||||
TORCH_CHECK(tile_scheduler_metadata.dtype() == torch::kInt32, "tile_scheduler_metadata must have dtype int32");
|
||||
TORCH_CHECK(tile_scheduler_metadata.size(1) == TileSchedulerMetaDataSize);
|
||||
CHECK_DEVICE(tile_scheduler_metadata);
|
||||
CHECK_CONTIGUOUS(tile_scheduler_metadata);
|
||||
|
||||
params.tile_scheduler_metadata_ptr = tile_scheduler_metadata.data_ptr<int>();
|
||||
params.num_sm_parts = tile_scheduler_metadata.size(0);
|
||||
TORCH_CHECK(num_splits.dtype() == torch::kInt32, "num_splits must have dtype int32");
|
||||
CHECK_DEVICE(num_splits);
|
||||
CHECK_CONTIGUOUS(num_splits);
|
||||
params.num_splits_ptr = num_splits.data_ptr<int>();
|
||||
|
||||
at::Tensor softmax_lse_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q}, opts.dtype(at::kFloat));
|
||||
at::Tensor out_accum = torch::empty({batch_size + params.num_sm_parts, num_heads, seqlen_q, head_size_v}, opts.dtype(at::kFloat));
|
||||
const int total_num_splits = batch_size + params.num_sm_parts;
|
||||
at::Tensor softmax_lse_accum = torch::empty({total_num_splits, num_heads, q_seq_per_hk}, opts.dtype(at::kFloat));
|
||||
at::Tensor out_accum = torch::empty({total_num_splits, num_heads, q_seq_per_hk, head_size_v}, opts.dtype(at::kFloat));
|
||||
CHECK_CONTIGUOUS(softmax_lse_accum);
|
||||
CHECK_CONTIGUOUS(out_accum);
|
||||
params.total_num_splits = total_num_splits;
|
||||
params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
|
||||
params.oaccum_ptr = out_accum.data_ptr();
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
TORCH_CHECK(head_size == 576);
|
||||
|
||||
TORCH_CHECK(head_size_k == 576);
|
||||
if (q_dtype == torch::kBFloat16) {
|
||||
run_mha_fwd_splitkv_mla<cutlass::bfloat16_t, 576>(params, stream);
|
||||
}
|
||||
#ifndef FLASH_MLA_DISABLE_FP16
|
||||
else if (q_dtype == torch::kHalf) {
|
||||
run_mha_fwd_splitkv_mla<cutlass::half_t, 576>(params, stream);
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
run_flash_splitkv_mla_kernel<cutlass::bfloat16_t>(params, stream);
|
||||
run_flash_mla_combine_kernel<cutlass::bfloat16_t>(params, stream);
|
||||
} else if (q_dtype == torch::kHalf) {
|
||||
#ifdef FLASH_MLA_DISABLE_FP16
|
||||
TORCH_CHECK(false, "FlashMLA is compiled with -DFLASH_MLA_DISABLE_FP16. Please remove this flag from your environment and re-compile FlashMLA.");
|
||||
#else
|
||||
run_flash_splitkv_mla_kernel<cutlass::half_t>(params, stream);
|
||||
run_flash_mla_combine_kernel<cutlass::half_t>(params, stream);
|
||||
#endif
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported tensor dtype for query");
|
||||
}
|
||||
|
||||
out = out.view({batch_size, seqlen_q_ori, ngroups, num_heads_k, head_size_v}).transpose(2, 3)
|
||||
.reshape({batch_size, seqlen_q_ori, num_heads_ori, head_size_v});
|
||||
softmax_lse = softmax_lse.view({batch_size, num_heads_k, seqlen_q_ori, ngroups}).transpose(2, 3)
|
||||
.reshape({batch_size, num_heads_ori, seqlen_q_ori});
|
||||
out = out.view({batch_size, seqlen_q_ori, num_q_heads_per_hk, num_heads_k, head_size_v}).transpose(2, 3)
|
||||
.reshape({batch_size, seqlen_q_ori, num_heads_q, head_size_v});
|
||||
softmax_lse = softmax_lse.view({batch_size, num_heads_k, seqlen_q_ori, num_q_heads_per_hk}).transpose(2, 3)
|
||||
.reshape({batch_size, num_heads_q, seqlen_q_ori});
|
||||
|
||||
return {out, softmax_lse};
|
||||
}
|
||||
|
||||
@ -1,3 +0,0 @@
|
||||
#include "flash_fwd_mla_kernel.h"
|
||||
|
||||
template void run_mha_fwd_splitkv_mla<cutlass::bfloat16_t, 576>(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
@ -1,3 +0,0 @@
|
||||
#include "flash_fwd_mla_kernel.h"
|
||||
|
||||
template void run_mha_fwd_splitkv_mla<cutlass::half_t, 576>(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
@ -1,603 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/array.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
|
||||
using namespace cute;
|
||||
|
||||
#include "named_barrier.h"
|
||||
#include "utils.h"
|
||||
#include "softmax.h"
|
||||
#include "static_switch.h"
|
||||
#include "flash_mla.h"
|
||||
|
||||
|
||||
template<typename PrecType, int DIM, int DIM2 = DIM>
|
||||
constexpr auto getSmemLayoutK() {
|
||||
constexpr int headSizeBytes = sizeof(PrecType) * DIM;
|
||||
constexpr int headSizeBytes2 = sizeof(PrecType) * DIM2;
|
||||
|
||||
if constexpr (headSizeBytes % 128 == 0 && headSizeBytes2 % 128 == 0) {
|
||||
return GMMA::Layout_K_SW128_Atom<PrecType>{};
|
||||
} else if constexpr (headSizeBytes % 64 == 0 && headSizeBytes2 % 64 == 0) {
|
||||
return GMMA::Layout_K_SW64_Atom<PrecType>{};
|
||||
} else {
|
||||
return GMMA::Layout_K_SW32_Atom<PrecType>{};
|
||||
}
|
||||
}
|
||||
|
||||
template<int kHeadDim_, int kBlockM_, int kBlockN_, int kNWarps_, typename elem_type=cutlass::bfloat16_t, int kHeadDimV_ = 0>
|
||||
struct Flash_fwd_kernel_traits_mla {
|
||||
using Element = elem_type;
|
||||
using ElementAccum = float;
|
||||
using index_t = int64_t;
|
||||
|
||||
static constexpr int kNWarps = kNWarps_;
|
||||
static constexpr int kNThreads = kNWarps * 32;
|
||||
static constexpr int kNWarpsS = 4;
|
||||
static constexpr int kNThreadsS = kNWarpsS * 32;
|
||||
|
||||
static constexpr int kBlockM = kBlockM_;
|
||||
static constexpr int kBlockN = kBlockN_;
|
||||
static constexpr int kHeadDim = kHeadDim_;
|
||||
static_assert(kHeadDim % 32 == 0);
|
||||
static constexpr int kHeadDimV = kHeadDimV_ != 0 ? kHeadDimV_ : kHeadDim;
|
||||
static_assert(kHeadDimV % 32 == 0);
|
||||
static_assert(kHeadDimV <= kHeadDim);
|
||||
static constexpr int kBlockKSmem = kHeadDim % 64 == 0 ? 64 : 32;
|
||||
static constexpr int kSwizzle = kBlockKSmem == 32 ? 2 : 3;
|
||||
|
||||
using TiledMma = decltype(make_tiled_mma(
|
||||
cute::GMMA::ss_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kBlockN>, Int<kHeadDim>>,
|
||||
GMMA::Major::K, GMMA::Major::K>(),
|
||||
Layout<Shape<Int<kNWarpsS / 4>, _1, _1>>{}));
|
||||
|
||||
static constexpr int AtomLayoutNO = kNThreads / kNThreadsS;
|
||||
using TiledMmaO = decltype(make_tiled_mma(
|
||||
cute::GMMA::rs_op_selector<Element, Element, ElementAccum, Shape<Int<kBlockM>, Int<kHeadDimV / AtomLayoutNO>, Int<kBlockN>>,
|
||||
GMMA::Major::K, GMMA::Major::MN>(),
|
||||
Layout<Shape<Int<kNWarpsS / 4>, Int<AtomLayoutNO>, _1>>{}));
|
||||
|
||||
using SmemLayoutQ = decltype(tile_to_shape(
|
||||
getSmemLayoutK<Element, kHeadDim>(),
|
||||
Shape<Int<kBlockM>, Int<kHeadDim>>{}));
|
||||
|
||||
using SmemLayoutK = decltype(tile_to_shape(
|
||||
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
|
||||
Shape<Int<kBlockN>, Int<kHeadDim>>{}));
|
||||
|
||||
using SmemLayoutV = decltype(tile_to_shape(
|
||||
getSmemLayoutK<Element, kHeadDim, kHeadDimV>(),
|
||||
Shape<Int<kBlockN>, Int<kHeadDimV>>{}));
|
||||
using SmemLayoutVtransposed = decltype(composition(SmemLayoutV{}, make_layout(Shape<Int<kHeadDimV>, Int<kBlockN>>{}, GenRowMajor{})));
|
||||
|
||||
using SmemLayoutP = Layout<Shape<Shape<_2, _2>, Int<kNThreadsS>, _1, Int<kBlockN / 8>>>;
|
||||
using SmemLayoutRow = Layout<Shape<_2, Int<kNThreadsS>>, Stride<_1, _2>>;
|
||||
|
||||
using SmemLayoutAtomO = decltype(composition(
|
||||
Swizzle<kSwizzle, 3, 3>{},
|
||||
Layout<Shape<Int<8>, Int<kBlockKSmem>>, Stride<Int<kBlockKSmem>, _1>>{}));
|
||||
using SmemLayoutO = decltype(tile_to_shape(
|
||||
SmemLayoutAtomO{},
|
||||
Shape<Int<kBlockM>, Int<kHeadDimV>>{}));
|
||||
using SmemCopyAtomO = Copy_Atom<SM90_U32x4_STSM_N, Element>;
|
||||
using SmemCopyAtomOaccum = Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>;
|
||||
|
||||
static constexpr int kGmemElemsPerLoad = sizeof(cute::uint128_t) / sizeof(Element);
|
||||
static_assert(kHeadDim % kGmemElemsPerLoad == 0, "kHeadDim must be a multiple of kGmemElemsPerLoad");
|
||||
static constexpr int kGmemThreadsPerRow = kBlockKSmem / kGmemElemsPerLoad;
|
||||
using Gmem_copy_struct = SM80_CP_ASYNC_CACHEGLOBAL<cute::uint128_t>;
|
||||
static constexpr int kNThreadsLoad = kNThreads - kNThreadsS;
|
||||
static_assert(kNThreadsLoad % kGmemThreadsPerRow == 0, "kNThreads must be a multiple of kGmemThreadsPerRow");
|
||||
|
||||
using GmemLayoutAtom = Layout<
|
||||
Shape<Int<kNThreadsLoad / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
|
||||
Stride<Int<kGmemThreadsPerRow>, _1>>;
|
||||
using GmemTiledCopy = decltype(make_tiled_copy(
|
||||
Copy_Atom<Gmem_copy_struct, Element>{},
|
||||
GmemLayoutAtom{},
|
||||
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per read
|
||||
|
||||
using GmemLayoutAtomO = Layout<
|
||||
Shape<Int<kNThreadsS / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
|
||||
Stride<Int<kGmemThreadsPerRow>, _1>>;
|
||||
using GmemTiledCopyO = decltype(make_tiled_copy(
|
||||
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
|
||||
GmemLayoutAtomO{},
|
||||
Layout<Shape<_1, _8>>{})); // Val layout, 8 vals per store
|
||||
|
||||
static constexpr int kGmemElemsPerLoadAccum = sizeof(cute::uint128_t) / sizeof(ElementAccum);
|
||||
static constexpr int kGmemThreadsPerRowAccum = kBlockKSmem / kGmemElemsPerLoadAccum;
|
||||
using GmemLayoutAtomOaccum = Layout<
|
||||
Shape<Int<kNThreadsS / kGmemThreadsPerRowAccum>, Int<kGmemThreadsPerRowAccum>>,
|
||||
Stride<Int<kGmemThreadsPerRowAccum>, _1>>;
|
||||
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
|
||||
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
|
||||
GmemLayoutAtomOaccum{},
|
||||
Layout<Shape<_1, _4>>{})); // Val layout, 4 vals per store
|
||||
};
|
||||
|
||||
namespace flash {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
template<typename Kernel_traits>
|
||||
struct SharedStorageMLA {
|
||||
union {
|
||||
struct {
|
||||
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutQ>> smem_q;
|
||||
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutK> * 2> smem_k; // Double buffer
|
||||
cute::array_aligned<typename Kernel_traits::Element, cute::cosize_v<typename Kernel_traits::SmemLayoutP>> smem_p;
|
||||
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_scale;
|
||||
};
|
||||
struct {
|
||||
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_max;
|
||||
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutRow>> smem_sum;
|
||||
cute::array_aligned<typename Kernel_traits::ElementAccum, cute::cosize_v<typename Kernel_traits::SmemLayoutO>> smem_o;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename Kernel_traits, bool Split, typename SharedStorage, typename AccO, typename Softmax>
|
||||
__forceinline__ __device__ void store(const Flash_fwd_mla_params ¶ms, const int bidb, const int bidh, const int m_block, const int n_split_idx,
|
||||
SharedStorage &shared_storage, AccO tOrO, Softmax softmax) {
|
||||
constexpr int kBlockM = Kernel_traits::kBlockM;
|
||||
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
|
||||
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
|
||||
using Element = typename Kernel_traits::Element;
|
||||
using ElementAccum = typename Kernel_traits::ElementAccum;
|
||||
using index_t = typename Kernel_traits::index_t;
|
||||
|
||||
const int tidx = threadIdx.x;
|
||||
|
||||
typename Kernel_traits::TiledMmaO tiled_mma_o;
|
||||
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
|
||||
|
||||
// Epilogue
|
||||
|
||||
const int split_offset = __ldg(params.num_splits_ptr + bidb);
|
||||
|
||||
Tensor lse = softmax.template normalize_softmax_lse</*Is_dropout=*/false, Split>(tOrO, params.scale_softmax);
|
||||
|
||||
using ElementO = std::conditional_t<!Split, Element, ElementAccum>;
|
||||
Tensor sOaccum = make_tensor(make_smem_ptr(reinterpret_cast<ElementO *>(shared_storage.smem_o.data())), typename Kernel_traits::SmemLayoutO{}); // (SMEM_M,SMEM_N)
|
||||
// Partition sO to match the accumulator partitioning
|
||||
using SmemTiledCopyO = std::conditional_t<
|
||||
!Split,
|
||||
typename Kernel_traits::SmemCopyAtomO,
|
||||
typename Kernel_traits::SmemCopyAtomOaccum
|
||||
>;
|
||||
auto smem_tiled_copy_Oaccum = make_tiled_copy_C(SmemTiledCopyO{}, tiled_mma_o);
|
||||
auto smem_thr_copy_Oaccum = smem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
||||
Tensor rO = flash::convert_type<ElementO>(tOrO);
|
||||
Tensor taccOrOaccum = smem_thr_copy_Oaccum.retile_S(rO); // ((Atom,AtomNum), MMA_M, MMA_N)
|
||||
Tensor taccOsOaccum = smem_thr_copy_Oaccum.partition_D(sOaccum); // ((Atom,AtomNum),PIPE_M,PIPE_N)
|
||||
|
||||
__syncthreads();
|
||||
|
||||
cute::copy(smem_tiled_copy_Oaccum, taccOrOaccum, taccOsOaccum);
|
||||
|
||||
const index_t row_offset_o = bidb * params.o_batch_stride + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
|
||||
const index_t row_offset_oaccum = (((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM) * params.d_v;
|
||||
const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
|
||||
const index_t row_offset_lseaccum = ((split_offset + n_split_idx) * params.h + bidh) * params.seqlen_q + m_block * kBlockM;
|
||||
|
||||
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementO *>(Split ? params.oaccum_ptr : params.o_ptr) + (Split ? row_offset_oaccum : row_offset_o)),
|
||||
Shape<Int<kBlockM>, Int<kHeadDimV>>{},
|
||||
make_stride(Split ? kHeadDimV : params.o_row_stride, _1{}));
|
||||
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(Split ? params.softmax_lseaccum_ptr : params.softmax_lse_ptr) + (Split ? row_offset_lseaccum : row_offset_lse)),
|
||||
Shape<Int<kBlockM>>{}, Stride<_1>{});
|
||||
|
||||
using GmemTiledCopyO = std::conditional_t<!Split, typename Kernel_traits::GmemTiledCopyO, typename Kernel_traits::GmemTiledCopyOaccum>;
|
||||
GmemTiledCopyO gmem_tiled_copy_Oaccum;
|
||||
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
||||
Tensor tOsOaccum = gmem_thr_copy_Oaccum.partition_S(sOaccum); // ((Atom,AtomNum),ATOM_M,ATOM_N)
|
||||
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_D(gOaccum);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (tidx >= kNThreadsS) { return; }
|
||||
|
||||
Tensor tOrOaccum = make_tensor<ElementO>(shape(tOgOaccum));
|
||||
cute::copy(gmem_tiled_copy_Oaccum, tOsOaccum, tOrOaccum);
|
||||
|
||||
Tensor caccO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
||||
Tensor taccOcO = thr_mma_o.partition_C(caccO); // ((MMA=4, X), MMA_M, MMA_K=1)
|
||||
Tensor taccOcO_row = taccOcO(make_coord(0, _, 0), _, 0);
|
||||
CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
|
||||
if (get<1>(taccOcO_row(0)) == 0) {
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size(lse); ++mi) {
|
||||
const int row = get<0>(taccOcO_row(mi));
|
||||
if (row < params.seqlen_q - m_block * kBlockM) { gLSEaccum(row) = lse(mi); }
|
||||
}
|
||||
}
|
||||
|
||||
// Construct identity layout for sO
|
||||
Tensor cO = make_identity_tensor(make_shape(size<0>(sOaccum), size<1>(sOaccum))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
||||
// Repeat the partitioning with identity layouts
|
||||
Tensor tOcO = gmem_thr_copy_Oaccum.partition_D(cO); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
||||
Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOgOaccum)));
|
||||
// Clear_OOB_K must be false since we don't want to write zeros to gmem
|
||||
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
|
||||
gmem_tiled_copy_Oaccum, tOrOaccum, tOgOaccum, tOcO, tOpO, params.seqlen_q - m_block * kBlockM
|
||||
);
|
||||
}
|
||||
|
||||
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
|
||||
__forceinline__ __device__ void compute_attn_1rowblock_splitkv_mla(const Flash_fwd_mla_params ¶ms,
|
||||
const int bidb, const int bidh, const int m_block,
|
||||
const int n_split_idx, const int seqlen_k,
|
||||
const int n_block_min, const int n_block_max, const bool NoSplit,
|
||||
SharedStorage &shared_storage) {
|
||||
constexpr int kBlockM = Kernel_traits::kBlockM;
|
||||
constexpr int kBlockN = Kernel_traits::kBlockN;
|
||||
constexpr int kHeadDim = Kernel_traits::kHeadDim;
|
||||
constexpr int kHeadDimV = Kernel_traits::kHeadDimV;
|
||||
constexpr int kNThreads = Kernel_traits::kNThreads;
|
||||
constexpr int kNThreadsS = Kernel_traits::kNThreadsS;
|
||||
static_assert(kNThreads == 256 and kNThreadsS == 128);
|
||||
using Element = typename Kernel_traits::Element;
|
||||
using index_t = typename Kernel_traits::index_t;
|
||||
|
||||
const int tidx = threadIdx.x;
|
||||
int n_block = n_block_max - 1;
|
||||
|
||||
Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), typename Kernel_traits::SmemLayoutQ{});
|
||||
Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutK{});
|
||||
Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutV{});
|
||||
Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), typename Kernel_traits::SmemLayoutVtransposed{});
|
||||
|
||||
Tensor sP = make_tensor(make_smem_ptr(shared_storage.smem_p.data()), typename Kernel_traits::SmemLayoutP{});
|
||||
Tensor tPsP = sP(_, tidx % kNThreadsS, _, _);
|
||||
Tensor sScale_o = make_tensor(make_smem_ptr(shared_storage.smem_scale.data()), typename Kernel_traits::SmemLayoutRow{});
|
||||
Tensor tScale_osScale_o = sScale_o(_, tidx % kNThreadsS);
|
||||
Tensor sRow_max = make_tensor(make_smem_ptr(shared_storage.smem_max.data()), typename Kernel_traits::SmemLayoutRow{});
|
||||
Tensor tRow_maxsRow_max = sRow_max(_, tidx % kNThreadsS);
|
||||
Tensor sRow_sum = make_tensor(make_smem_ptr(shared_storage.smem_sum.data()), typename Kernel_traits::SmemLayoutRow{});
|
||||
Tensor tRow_sumsRow_sum = sRow_sum(_, tidx % kNThreadsS);
|
||||
|
||||
typename Kernel_traits::TiledMmaO tiled_mma_o;
|
||||
auto thr_mma_o = tiled_mma_o.get_thread_slice(tidx);
|
||||
Tensor tOrVt = thr_mma_o.partition_fragment_B(sVt); // (MMA, MMA_K,MMA_N)
|
||||
Tensor tOrO = partition_fragment_C(tiled_mma_o, Shape<Int<kBlockM>, Int<kHeadDimV>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
|
||||
clear(tOrO);
|
||||
|
||||
flash::Softmax<2 * size<1>(tOrO)> softmax;
|
||||
|
||||
int warp_group_idx = cutlass::canonical_warp_group_idx();
|
||||
if (warp_group_idx == 0) {
|
||||
typename Kernel_traits::TiledMma tiled_mma;
|
||||
auto thr_mma = tiled_mma.get_thread_slice(tidx);
|
||||
Tensor tSrQ = thr_mma.partition_fragment_A(sQ); // (MMA,MMA_M,MMA_K)
|
||||
Tensor tSrK = thr_mma.partition_fragment_B(sK); // (MMA,MMA_N,MMA_K)
|
||||
|
||||
if (n_block % 2 == 1) {
|
||||
// Double buffer for sK
|
||||
constexpr int sK_offset = size(sK);
|
||||
tSrK.data() = tSrK.data() + sK_offset / 8;
|
||||
tOrVt.data() = tOrVt.data() + sK_offset / 8;
|
||||
}
|
||||
|
||||
// We need masking on S for the very last block when K and V has length not multiple of kBlockN.
|
||||
// We also need masking on S if it's causal, for the last ceil_div(kBlockM, kBlockN) blocks.
|
||||
// We will have at least 1 "masking" iteration.
|
||||
// If not even_N, then seqlen_k might end in the middle of a block. In that case we need to
|
||||
// mask 2 blocks (e.g. when kBlockM == kBlockN), not just 1.
|
||||
constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
|
||||
#pragma unroll 1
|
||||
for (int masking_step = n_masking_steps; n_block >= n_block_min; --masking_step, --n_block) {
|
||||
__syncthreads();
|
||||
|
||||
Tensor tSrS = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}); // ((MMA=4, X), MMA_M, MMA_N=1)
|
||||
flash::gemm</*zero_init=*/true, /*wg_wait=*/0>(tiled_mma, tSrQ, tSrK, tSrS);
|
||||
|
||||
const bool is_masking_step = masking_step > 0;
|
||||
const bool is_first_masking_step = masking_step == n_masking_steps;
|
||||
|
||||
if (is_masking_step) {
|
||||
Tensor cS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});
|
||||
Tensor tScS = thr_mma.partition_C(cS);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < size(tSrS); ++i) {
|
||||
if constexpr (!Is_causal) { // Just masking based on col
|
||||
if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) tSrS(i) = -INFINITY;
|
||||
} else {
|
||||
// Ensure seqlen_k - 1 - (n_block * kBlockN + col) >= (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
|
||||
// col <= seqlen_k - 1 - n_block * kBlockN - (seqlen_q - 1 - (m_block * kBlockM + row)) / ngroups
|
||||
int row = int(get<0>(tScS(i)));
|
||||
int col_limit_right = seqlen_k - 1 - n_block * kBlockN - (params.seqlen_q - 1 - (m_block * kBlockM + row)) / params.ngroups;
|
||||
if (int(get<1>(tScS(i))) > col_limit_right) tSrS(i) = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// We have key_padding_mask so we'll need to Check_inf
|
||||
Tensor scale_o = is_first_masking_step
|
||||
? softmax.template softmax</*Is_first=*/true, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
|
||||
: is_masking_step ?
|
||||
softmax.template softmax</*Is_first=*/false, /*Check_inf=*/Is_causal>(tSrS, params.scale_softmax_log2)
|
||||
: softmax.template softmax</*Is_first=*/false, /*Check_inf=*//*Is_local=*/false>(tSrS, params.scale_softmax_log2);
|
||||
|
||||
Tensor rP = flash::convert_type<Element>(tSrS);
|
||||
cute::copy(rP, tPsP);
|
||||
cute::copy(scale_o, tScale_osScale_o);
|
||||
|
||||
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SReady));
|
||||
|
||||
flash::rescale_o(tOrO, scale_o);
|
||||
|
||||
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
||||
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
|
||||
|
||||
// Double buffer for sK
|
||||
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
|
||||
tSrK.data() = tSrK.data() + sK_offset / 8;
|
||||
tOrVt.data() = tOrVt.data() + sK_offset / 8;
|
||||
}
|
||||
|
||||
cute::copy(softmax.row_max, tRow_maxsRow_max);
|
||||
cute::copy(softmax.row_sum, tRow_sumsRow_sum);
|
||||
cutlass::arch::NamedBarrier::arrive(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
|
||||
} else {
|
||||
const int *block_table = params.block_table + bidb * params.block_table_batch_stride;
|
||||
int cur_block_table = __ldg(&block_table[n_block]);
|
||||
|
||||
const index_t row_offset_q = bidb * params.q_batch_stride + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
|
||||
Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
|
||||
Shape<Int<kBlockM>, Int<kHeadDim>>{},
|
||||
make_stride(params.q_row_stride, _1{}));
|
||||
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_Q;
|
||||
auto gmem_thr_copy_Q = gmem_tiled_copy_Q.get_thread_slice(tidx - kNThreadsS);
|
||||
Tensor tQgQ = gmem_thr_copy_Q.partition_S(gQ);
|
||||
Tensor tQsQ = gmem_thr_copy_Q.partition_D(sQ);
|
||||
Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ))); // (BLK_M,BLK_K) -> (blk_m,blk_k)
|
||||
Tensor tQcQ = gmem_thr_copy_Q.partition_S(cQ); // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
|
||||
Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
|
||||
|
||||
// We don't need to clear the sQ smem tiles since we'll only write out the valid outputs
|
||||
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true>(gmem_tiled_copy_Q, tQgQ, tQsQ, tQcQ, tQpQ,
|
||||
params.seqlen_q - m_block * kBlockM);
|
||||
|
||||
const index_t row_offset_k = (bidh / params.h_h_k_ratio) * params.k_head_stride;
|
||||
Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
|
||||
Shape<Int<kBlockN>, Int<kHeadDim>>{},
|
||||
make_stride(params.k_row_stride, _1{}));
|
||||
typename Kernel_traits::GmemTiledCopy gmem_tiled_copy_K;
|
||||
auto gmem_thr_copy_K = gmem_tiled_copy_K.get_thread_slice(tidx - kNThreadsS);
|
||||
Tensor tKgK = gmem_thr_copy_K.partition_S(gK);
|
||||
Tensor tKsK = gmem_thr_copy_K.partition_D(sK);
|
||||
Tensor cK = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK))); // (BLK_N,BLK_K) -> (blk_n,blk_k)
|
||||
Tensor tKcK = gmem_thr_copy_K.partition_S(cK); // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)
|
||||
Tensor tKpK = make_tensor<bool>(make_shape(size<2>(tKsK)));
|
||||
|
||||
if (n_block % 2 == 1) {
|
||||
// Double buffer for sK
|
||||
constexpr int sK_offset = size(sK);
|
||||
tKsK.data() = tKsK.data() + sK_offset;
|
||||
tOrVt.data() = tOrVt.data() + sK_offset / 8;
|
||||
}
|
||||
|
||||
// We need to clear the sK smem tiles because K is V.
|
||||
const index_t offset_k = cur_block_table * params.k_batch_stride;
|
||||
tKgK.data() = tKgK.data() + offset_k;
|
||||
flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/true, /*Clear_OOB_MN=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK,
|
||||
seqlen_k - n_block * kBlockN);
|
||||
tKgK.data() = tKgK.data() + -offset_k;
|
||||
cute::cp_async_fence();
|
||||
|
||||
if (n_block - 1 >= n_block_min) {
|
||||
cur_block_table = __ldg(&block_table[n_block - 1]);
|
||||
}
|
||||
|
||||
#pragma unroll 1
|
||||
for (; n_block >= n_block_min; --n_block) {
|
||||
flash::cp_async_wait<0>();
|
||||
__syncthreads();
|
||||
|
||||
if (n_block - 1 >= n_block_min) {
|
||||
// Double buffer for sK
|
||||
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
|
||||
tKsK.data() = tKsK.data() + sK_offset;
|
||||
|
||||
const index_t offset_k = cur_block_table * params.k_batch_stride;
|
||||
tKgK.data() = tKgK.data() + offset_k;
|
||||
flash::copy</*Is_even_MN=*/true, /*Is_even_K=*/true>(gmem_tiled_copy_K, tKgK, tKsK, tKcK, tKpK);
|
||||
tKgK.data() = tKgK.data() + -offset_k;
|
||||
cute::cp_async_fence();
|
||||
}
|
||||
|
||||
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SReady));
|
||||
|
||||
if (n_block - 2 >= n_block_min) {
|
||||
cur_block_table = __ldg(&block_table[n_block - 2]);
|
||||
}
|
||||
|
||||
typename Kernel_traits::TiledMma tiled_mma;
|
||||
auto tSrS_layout = partition_fragment_C(tiled_mma, Shape<Int<kBlockM>, Int<kBlockN>>{}).layout();
|
||||
Tensor rP = make_tensor<Element>(tSrS_layout);
|
||||
Tensor scale_o = make_tensor<float>(Shape<_2>{});
|
||||
cute::copy(tScale_osScale_o, scale_o);
|
||||
cute::copy(tPsP, rP);
|
||||
|
||||
flash::rescale_o(tOrO, scale_o);
|
||||
|
||||
Tensor tOrP = make_tensor(rP.data(), flash::convert_layout_acc_Aregs<Kernel_traits::TiledMma>(rP.layout()));
|
||||
flash::gemm</*zero_init=*/false, /*wg_wait=*/0>(tiled_mma_o, tOrP, tOrVt, tOrO);
|
||||
|
||||
// Double buffer for sK
|
||||
const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
|
||||
tOrVt.data() = tOrVt.data() + sK_offset / 8;
|
||||
}
|
||||
|
||||
cutlass::arch::NamedBarrier::sync(kNThreads, static_cast<int>(NamedBarriers::SoftmaxReady));
|
||||
cute::copy(tRow_maxsRow_max, softmax.row_max);
|
||||
cute::copy(tRow_sumsRow_sum, softmax.row_sum);
|
||||
}
|
||||
|
||||
if (NoSplit)
|
||||
store<Kernel_traits, false>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
|
||||
else
|
||||
store<Kernel_traits, true>(params, bidb, bidh, m_block, n_split_idx, shared_storage, tOrO, softmax);
|
||||
}
|
||||
|
||||
template<typename Kernel_traits, bool Is_causal, typename SharedStorage>
|
||||
__global__ void __launch_bounds__(Kernel_traits::kNThreads, 1, 1)
|
||||
flash_fwd_splitkv_mla_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
|
||||
constexpr int kBlockN = Kernel_traits::kBlockN;
|
||||
const int m_block = blockIdx.x;
|
||||
const int bidh = blockIdx.y;
|
||||
const int partition_idx = blockIdx.z;
|
||||
|
||||
extern __shared__ char shared_memory[];
|
||||
auto &shared_storage = *reinterpret_cast<SharedStorage *>(shared_memory);
|
||||
|
||||
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr + partition_idx * TileSchedulerMetaDataSize;
|
||||
int4 tile_scheduler_metadata = __ldg(reinterpret_cast<int4 *>(tile_scheduler_metadata_ptr));
|
||||
int begin_idx = tile_scheduler_metadata.x;
|
||||
int begin_seqlen = tile_scheduler_metadata.y;
|
||||
int end_idx = tile_scheduler_metadata.z;
|
||||
int end_seqlen = tile_scheduler_metadata.w;
|
||||
if (begin_idx >= params.b) return;
|
||||
int begin_n_split_idx = __ldg(tile_scheduler_metadata_ptr + 4);
|
||||
|
||||
#pragma unroll 1
|
||||
for (int batch_id = begin_idx; batch_id <= end_idx; ++batch_id) {
|
||||
const int n_split_idx = batch_id == begin_idx ? begin_n_split_idx : 0;
|
||||
const int seqlen_k = __ldg(params.cu_seqlens_k + batch_id);
|
||||
const int n_block_min = batch_id == begin_idx ? begin_seqlen / kBlockN : 0;
|
||||
const int n_block_max = batch_id == end_idx ? cute::ceil_div(end_seqlen, kBlockN) : cute::ceil_div(seqlen_k, kBlockN);
|
||||
const bool NoSplit = n_block_min == 0 && n_block_max == cute::ceil_div(seqlen_k, kBlockN);
|
||||
if (batch_id > begin_idx) {
|
||||
__syncthreads(); // Barrier between two tiles.
|
||||
}
|
||||
flash::compute_attn_1rowblock_splitkv_mla<Kernel_traits, Is_causal>(params, batch_id, bidh, m_block, n_split_idx, seqlen_k, n_block_min, n_block_max, NoSplit, shared_storage);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename Element, typename ElementAccum, typename index_t, int kHeadDimV, int kMaxSplits>
|
||||
__global__ void __launch_bounds__(256, 1, 1)
|
||||
flash_fwd_splitkv_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
|
||||
constexpr int kNThreads = 128;
|
||||
|
||||
const int tidx = threadIdx.x;
|
||||
const int bidx = blockIdx.x;
|
||||
const int hs = params.h * params.seqlen_q;
|
||||
const int batch_idx = bidx / hs;
|
||||
const int hs_idx = bidx % hs;
|
||||
|
||||
const int split_offset = __ldg(params.num_splits_ptr + batch_idx);
|
||||
const int actual_num_splits = __ldg(params.num_splits_ptr + batch_idx + 1) - split_offset;
|
||||
FLASH_DEVICE_ASSERT(actual_num_splits <= kMaxSplits);
|
||||
if (actual_num_splits == 1) return;
|
||||
|
||||
__shared__ ElementAccum sLseScale[kMaxSplits];
|
||||
|
||||
const index_t row_offset_lseaccum = split_offset * hs + hs_idx;
|
||||
const index_t row_offset_lse = bidx;
|
||||
Tensor gLSEaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lseaccum_ptr) + row_offset_lseaccum),
|
||||
Shape<Int<kMaxSplits>>{}, make_stride(hs));
|
||||
Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
|
||||
Shape<_1>{}, Stride<_1>{});
|
||||
|
||||
int warp_idx = cutlass::canonical_warp_idx_sync();
|
||||
if (warp_idx == 0) {
|
||||
constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);
|
||||
|
||||
float local_lse[kNLsePerThread];
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
const int split = i * 32 + tidx;
|
||||
local_lse[i] = split < actual_num_splits ? gLSEaccum(split) : -INFINITY;
|
||||
}
|
||||
|
||||
float max_lse = -INFINITY;
|
||||
for (int i = 0; i < kNLsePerThread; ++i) max_lse = max(max_lse, local_lse[i]);
|
||||
for (int offset = 16; offset >= 1; offset /= 2) max_lse = max(max_lse, __shfl_xor_sync(uint32_t(-1), max_lse, offset));
|
||||
max_lse = max_lse == -INFINITY ? 0.0f : max_lse; // In case all local LSEs are -inf
|
||||
|
||||
float sum_lse = 0;
|
||||
for (int i = 0; i < kNLsePerThread; ++i) sum_lse = sum_lse + expf(local_lse[i] - max_lse);
|
||||
for (int offset = 16; offset >= 1; offset /= 2) sum_lse = sum_lse + __shfl_xor_sync(uint32_t(-1), sum_lse, offset);
|
||||
|
||||
float global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? INFINITY : logf(sum_lse) + max_lse;
|
||||
if (tidx == 0) gLSE(0) = global_lse;
|
||||
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
const int split = i * 32 + tidx;
|
||||
if (split < actual_num_splits) sLseScale[split] = expf(local_lse[i] - global_lse);
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
static_assert(kHeadDimV % kNThreads == 0);
|
||||
constexpr int Elements = kHeadDimV / kNThreads;
|
||||
const index_t row_offset_oaccum = (split_offset * hs + hs_idx) * kHeadDimV;
|
||||
Tensor gOaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.oaccum_ptr) + row_offset_oaccum),
|
||||
Shape<Int<kHeadDimV>>{}, Stride<_1>{});
|
||||
using GmemTiledCopyOaccum = decltype(make_tiled_copy(
|
||||
Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{},
|
||||
Layout<Shape<Int<kNThreads>>>{},
|
||||
Layout<Shape<Int<Elements>>>{}));
|
||||
GmemTiledCopyOaccum gmem_tiled_copy_Oaccum;
|
||||
auto gmem_thr_copy_Oaccum = gmem_tiled_copy_Oaccum.get_thread_slice(tidx);
|
||||
Tensor tOgOaccum = gmem_thr_copy_Oaccum.partition_S(gOaccum);
|
||||
Tensor tOrOaccum = make_tensor<ElementAccum>(shape(tOgOaccum));
|
||||
Tensor tOrO = make_tensor<ElementAccum>(shape(tOgOaccum));
|
||||
clear(tOrO);
|
||||
|
||||
for (int split = 0; split < actual_num_splits; ++split) {
|
||||
cute::copy(tOgOaccum, tOrOaccum);
|
||||
ElementAccum lse_scale = sLseScale[split];
|
||||
for (int i = 0; i < size(tOrO); ++i) {
|
||||
tOrO(i) += lse_scale * tOrOaccum(i);
|
||||
}
|
||||
tOgOaccum.data() = tOgOaccum.data() + hs * kHeadDimV;
|
||||
}
|
||||
|
||||
Tensor rO = flash::convert_type<Element>(tOrO);
|
||||
const int head_idx = (bidx - batch_idx * hs) / params.seqlen_q;
|
||||
const int row = bidx - batch_idx * hs - head_idx * params.seqlen_q;
|
||||
auto o_ptr = reinterpret_cast<Element *>(params.o_ptr) + batch_idx * params.o_batch_stride + head_idx * params.o_head_stride + row * params.o_row_stride;
|
||||
Tensor gO = make_tensor(make_gmem_ptr(o_ptr + tidx * Elements), Shape<Int<decltype(size<0>(rO))::value>>{}, Stride<_1>{});
|
||||
cute::copy(rO, gO);
|
||||
}
|
||||
|
||||
} // namespace flash
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename Kernel_traits, typename SharedStorage>
|
||||
void run_flash_splitkv_fwd_mla(Flash_fwd_mla_params ¶ms, cudaStream_t stream) {
|
||||
FLASH_ASSERT(params.page_block_size == Kernel_traits::kBlockN);
|
||||
const int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
|
||||
BOOL_SWITCH(params.is_causal, Is_causal, [&] {
|
||||
auto kernel = &flash::flash_fwd_splitkv_mla_kernel<Kernel_traits, Is_causal, SharedStorage>;
|
||||
constexpr size_t smem_size = sizeof(SharedStorage);
|
||||
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
||||
kernel<<<dim3(num_m_block, params.h, params.num_sm_parts), Kernel_traits::kNThreads, smem_size, stream>>>(params);
|
||||
});
|
||||
CHECK_CUDA_KERNEL_LAUNCH();
|
||||
|
||||
dim3 grid_combine(params.b * params.h * params.seqlen_q);
|
||||
MLA_NUM_SPLITS_SWITCH(params.num_sm_parts, kMaxSplits, [&] {
|
||||
auto combine_kernel = &flash::flash_fwd_splitkv_mla_combine_kernel<
|
||||
typename Kernel_traits::Element, typename Kernel_traits::ElementAccum, typename Kernel_traits::index_t, Kernel_traits::kHeadDimV, kMaxSplits>;
|
||||
combine_kernel<<<grid_combine, 128, 0, stream>>>(params);
|
||||
});
|
||||
CHECK_CUDA_KERNEL_LAUNCH();
|
||||
}
|
||||
|
||||
template<typename T, int Headdim>
|
||||
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params ¶ms, cudaStream_t stream) {
|
||||
static_assert(Headdim == 576);
|
||||
FLASH_ASSERT(params.d_v == 512);
|
||||
FLASH_ASSERT(params.k_ptr == params.v_ptr); // Shared_KV
|
||||
using Kernel_traits = Flash_fwd_kernel_traits_mla<576, 64, 64, 8, T, 512>;
|
||||
run_flash_splitkv_fwd_mla<Kernel_traits, flash::SharedStorageMLA<Kernel_traits>>(params, stream);
|
||||
}
|
||||
@ -5,39 +5,41 @@
|
||||
struct Flash_fwd_mla_params {
|
||||
using index_t = int64_t;
|
||||
|
||||
int b, seqlen_q, d, d_v;
|
||||
int h, h_h_k_ratio, ngroups;
|
||||
int b; // batch size
|
||||
int s_q;
|
||||
int q_seq_per_hk; // The number of q(s) per KV head, = h_q / h_k * s_q
|
||||
int d, d_v; // K/V dimension
|
||||
int h_q, h_k; // The number of Q/K heads
|
||||
int num_blocks; // Number of blocks in total
|
||||
int q_head_per_hk; // The number of q_head(s) per KV head, = h_q / h_k
|
||||
bool is_causal;
|
||||
float scale_softmax, scale_softmax_log2;
|
||||
int *__restrict__ cu_seqlens_k;
|
||||
|
||||
|
||||
void *__restrict__ q_ptr;
|
||||
void *__restrict__ k_ptr;
|
||||
void *__restrict__ v_ptr;
|
||||
void *__restrict__ o_ptr;
|
||||
void *__restrict__ softmax_lse_ptr;
|
||||
|
||||
index_t q_batch_stride;
|
||||
index_t k_batch_stride;
|
||||
index_t v_batch_stride;
|
||||
index_t o_batch_stride;
|
||||
index_t q_row_stride;
|
||||
index_t k_row_stride;
|
||||
index_t v_row_stride;
|
||||
index_t o_row_stride;
|
||||
index_t q_head_stride;
|
||||
index_t k_head_stride;
|
||||
index_t v_head_stride;
|
||||
index_t o_head_stride;
|
||||
|
||||
int *__restrict__ block_table;
|
||||
index_t block_table_batch_stride;
|
||||
int page_block_size;
|
||||
int *__restrict__ seqlens_k_ptr;
|
||||
|
||||
int *__restrict__ tile_scheduler_metadata_ptr;
|
||||
int num_sm_parts;
|
||||
int *__restrict__ num_splits_ptr;
|
||||
|
||||
int total_num_splits;
|
||||
void *__restrict__ softmax_lseaccum_ptr;
|
||||
void *__restrict__ oaccum_ptr;
|
||||
};
|
||||
@ -45,11 +47,6 @@ struct Flash_fwd_mla_params {
|
||||
static constexpr int TileSchedulerMetaDataSize = 8;
|
||||
// [begin_idx, begin_seqlen, end_idx, end_seqlen, begin_n_split_idx, _, _, _]
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T, int Headdim>
|
||||
void run_mha_fwd_splitkv_mla(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
|
||||
struct Mla_metadata_params {
|
||||
int *__restrict__ seqlens_k_ptr;
|
||||
int *__restrict__ tile_scheduler_metadata_ptr;
|
||||
@ -59,5 +56,3 @@ struct Mla_metadata_params {
|
||||
int fixed_overhead_num_blocks;
|
||||
int num_sm_parts;
|
||||
};
|
||||
|
||||
void get_mla_metadata_func(Mla_metadata_params ¶ms, cudaStream_t stream);
|
||||
|
||||
13
csrc/kernels/config.h
Normal file
13
csrc/kernels/config.h
Normal file
@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
namespace Config {
|
||||
|
||||
static constexpr int BLOCK_SIZE_M = 64;
|
||||
static constexpr int PAGE_BLOCK_SIZE = 64;
|
||||
|
||||
static constexpr int HEAD_DIM_K = 576;
|
||||
static constexpr int HEAD_DIM_V = 512;
|
||||
|
||||
static constexpr int FIXED_OVERHEAD_NUM_BLOCKS = 5;
|
||||
|
||||
}
|
||||
@ -1,8 +1,11 @@
|
||||
#include "flash_fwd_mla_kernel.h"
|
||||
#include "get_mla_metadata.h"
|
||||
|
||||
static constexpr int MaxBatchSize = 4096;
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cutlass/fast_math.h>
|
||||
|
||||
__global__ void __launch_bounds__(256, 1, 1)
|
||||
#include "utils.h"
|
||||
|
||||
__global__ void __launch_bounds__(32, 1, 1)
|
||||
get_mla_metadata_kernel(__grid_constant__ const Mla_metadata_params params) {
|
||||
int *seqlens_k_ptr = params.seqlens_k_ptr;
|
||||
int *tile_scheduler_metadata_ptr = params.tile_scheduler_metadata_ptr;
|
||||
@ -12,8 +15,9 @@ get_mla_metadata_kernel(__grid_constant__ const Mla_metadata_params params) {
|
||||
int fixed_overhead_num_blocks = params.fixed_overhead_num_blocks;
|
||||
int num_sm_parts = params.num_sm_parts;
|
||||
|
||||
__shared__ int num_blocks_shared[MaxBatchSize];
|
||||
__shared__ int num_splits_shared[MaxBatchSize];
|
||||
extern __shared__ int shared_mem[];
|
||||
int* num_blocks_shared = shared_mem; // [batch_size]
|
||||
int* num_splits_shared = shared_mem + batch_size; // [batch_size+1]
|
||||
|
||||
int total_num_blocks = 0;
|
||||
for (int i = threadIdx.x; i < batch_size; i += 32) {
|
||||
@ -27,7 +31,7 @@ get_mla_metadata_kernel(__grid_constant__ const Mla_metadata_params params) {
|
||||
__syncwarp();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
int payload = cutlass::ceil_div(total_num_blocks, num_sm_parts) + fixed_overhead_num_blocks;
|
||||
int payload = max(cutlass::ceil_div(total_num_blocks, num_sm_parts) + fixed_overhead_num_blocks, 2*fixed_overhead_num_blocks);
|
||||
|
||||
int now_idx = 0, now_block = 0, now_n_split_idx = 0, cum_num_splits = 0;
|
||||
num_splits_shared[0] = 0;
|
||||
@ -70,8 +74,9 @@ get_mla_metadata_kernel(__grid_constant__ const Mla_metadata_params params) {
|
||||
}
|
||||
}
|
||||
|
||||
void get_mla_metadata_func(Mla_metadata_params ¶ms, cudaStream_t stream) {
|
||||
FLASH_ASSERT(params.batch_size < MaxBatchSize);
|
||||
get_mla_metadata_kernel<<<1, 32, 0, stream>>>(params);
|
||||
void run_get_mla_metadata_kernel(Mla_metadata_params ¶ms, cudaStream_t stream) {
|
||||
int smem_size = sizeof(int) * (params.batch_size*2+1);
|
||||
CHECK_CUDA(cudaFuncSetAttribute(get_mla_metadata_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
||||
get_mla_metadata_kernel<<<1, 32, smem_size, stream>>>(params);
|
||||
CHECK_CUDA_KERNEL_LAUNCH();
|
||||
}
|
||||
}
|
||||
5
csrc/kernels/get_mla_metadata.h
Normal file
5
csrc/kernels/get_mla_metadata.h
Normal file
@ -0,0 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include "flash_mla.h"
|
||||
|
||||
void run_get_mla_metadata_kernel(Mla_metadata_params ¶ms, cudaStream_t stream);
|
||||
207
csrc/kernels/mla_combine.cu
Normal file
207
csrc/kernels/mla_combine.cu
Normal file
@ -0,0 +1,207 @@
|
||||
#include "mla_combine.h"
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/array.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
|
||||
#include "flash_mla.h"
|
||||
#include "utils.h"
|
||||
#include "config.h" // for BLOCK_SIZE_M and HEAD_DIM_V
|
||||
|
||||
using namespace cute;
|
||||
|
||||
template<typename ElementT, int HEAD_DIM_V, int BLOCK_SIZE_M, int MAX_SPLITS, int NUM_THREADS>
|
||||
__global__ void __launch_bounds__(NUM_THREADS)
|
||||
flash_fwd_mla_combine_kernel(__grid_constant__ const Flash_fwd_mla_params params) {
|
||||
// grid_shape: [batch_size, num_q_heads*s_q / BLOCK_SIZE_M]
|
||||
// Each CTA gathers the activation of some heads from one batch, do scaling & accumulation, and save the result
|
||||
static_assert(NUM_THREADS/32 == BLOCK_SIZE_M); // The number of warps == block_size_m
|
||||
const int batch_idx = blockIdx.x;
|
||||
const int m_block_idx = blockIdx.y;
|
||||
const int warp_idx = threadIdx.x / 32;
|
||||
const int lane_idx = threadIdx.x % 32;
|
||||
|
||||
const int start_split_idx = __ldg(params.num_splits_ptr + batch_idx);
|
||||
const int end_split_idx = __ldg(params.num_splits_ptr + batch_idx + 1);
|
||||
const int my_num_splits = end_split_idx - start_split_idx;
|
||||
FLASH_DEVICE_ASSERT(my_num_splits <= MAX_SPLITS);
|
||||
if (my_num_splits == 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int num_q_seqs = params.q_seq_per_hk * params.h_k;
|
||||
const int num_cur_valid_q_seqs = min(BLOCK_SIZE_M, num_q_seqs - m_block_idx*BLOCK_SIZE_M);
|
||||
Tensor gLseAccum = make_tensor(
|
||||
make_gmem_ptr((float*)params.softmax_lseaccum_ptr + start_split_idx*num_q_seqs + m_block_idx*BLOCK_SIZE_M),
|
||||
Shape<Int<MAX_SPLITS>, Int<BLOCK_SIZE_M>>{},
|
||||
make_stride(num_q_seqs, _1{})
|
||||
);
|
||||
Tensor gLse = make_tensor(
|
||||
make_gmem_ptr((float*)params.softmax_lse_ptr + batch_idx*num_q_seqs + m_block_idx*BLOCK_SIZE_M),
|
||||
Shape<Int<BLOCK_SIZE_M>>{},
|
||||
Stride<_1>{}
|
||||
);
|
||||
|
||||
extern __shared__ float smem_buf[];
|
||||
Tensor sLseScale = make_tensor(
|
||||
make_smem_ptr(smem_buf),
|
||||
Shape<Int<BLOCK_SIZE_M>, Int<MAX_SPLITS>>{},
|
||||
Stride<Int<MAX_SPLITS+1>, _1>{} // +1 to avoid bank conflict
|
||||
);
|
||||
|
||||
// Wait for the previous kernel (the MLA kernel) to finish
|
||||
cudaGridDependencySynchronize();
|
||||
|
||||
// Read gLseAccum into sLseScale
|
||||
{
|
||||
#pragma unroll 4
|
||||
for (int elem_idx = threadIdx.x; elem_idx < my_num_splits*BLOCK_SIZE_M; elem_idx += NUM_THREADS) {
|
||||
int split_idx = elem_idx / BLOCK_SIZE_M;
|
||||
int seq_idx = elem_idx % BLOCK_SIZE_M;
|
||||
sLseScale(seq_idx, split_idx) = seq_idx < num_cur_valid_q_seqs ? gLseAccum(split_idx, seq_idx) : -INFINITY;
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (warp_idx >= num_cur_valid_q_seqs)
|
||||
return;
|
||||
|
||||
// Warp #i gathers LseAccum for seq #i
|
||||
{
|
||||
constexpr int NUM_LSE_PER_THREAD = cute::ceil_div(MAX_SPLITS, 32);
|
||||
float local_lse[NUM_LSE_PER_THREAD];
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < NUM_LSE_PER_THREAD; ++i) {
|
||||
const int split_idx = i*32 + lane_idx;
|
||||
local_lse[i] = split_idx < my_num_splits ? sLseScale(warp_idx, split_idx) : -INFINITY;
|
||||
}
|
||||
|
||||
float max_lse = -INFINITY;
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < NUM_LSE_PER_THREAD; ++i)
|
||||
max_lse = max(max_lse, local_lse[i]);
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int offset = 16; offset >= 1; offset /= 2)
|
||||
max_lse = max(max_lse, __shfl_xor_sync(uint32_t(-1), max_lse, offset));
|
||||
max_lse = max_lse == -INFINITY ? 0.0f : max_lse; // In case all local LSEs are -inf
|
||||
|
||||
float sum_lse = 0;
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < NUM_LSE_PER_THREAD; ++i)
|
||||
sum_lse = sum_lse + exp2f(local_lse[i] - max_lse);
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int offset = 16; offset >= 1; offset /= 2)
|
||||
sum_lse = sum_lse + __shfl_xor_sync(uint32_t(-1), sum_lse, offset);
|
||||
|
||||
float global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? INFINITY : log2f(sum_lse) + max_lse;
|
||||
if (lane_idx == 0)
|
||||
gLse(warp_idx) = global_lse / (float)M_LOG2E;
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < NUM_LSE_PER_THREAD; ++i) {
|
||||
const int split_idx = i*32 + lane_idx;
|
||||
if (split_idx < my_num_splits) sLseScale(warp_idx, split_idx) = exp2f(local_lse[i] - global_lse);
|
||||
}
|
||||
}
|
||||
|
||||
__syncwarp();
|
||||
|
||||
// Warp #i accumulates activation for seq #i
|
||||
{
|
||||
const int64_t row_offset_oaccum = (int64_t)(start_split_idx*num_q_seqs+m_block_idx*BLOCK_SIZE_M+warp_idx) * HEAD_DIM_V;
|
||||
Tensor gOaccum = make_tensor(
|
||||
make_gmem_ptr(reinterpret_cast<float *>(params.oaccum_ptr) + row_offset_oaccum),
|
||||
Shape<Int<MAX_SPLITS>, Int<HEAD_DIM_V>>{},
|
||||
make_stride(num_q_seqs*HEAD_DIM_V, _1{})
|
||||
);
|
||||
|
||||
static_assert(HEAD_DIM_V % 32 == 0);
|
||||
constexpr int ELEMS_PER_THREAD = HEAD_DIM_V / 32;
|
||||
float result[ELEMS_PER_THREAD];
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < ELEMS_PER_THREAD; ++i)
|
||||
result[i] = 0.0f;
|
||||
|
||||
#pragma unroll 2
|
||||
for (int split = 0; split < my_num_splits; ++split) {
|
||||
float lse_scale = sLseScale(warp_idx, split);
|
||||
if (lse_scale != 0.f) {
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < ELEMS_PER_THREAD; ++i) {
|
||||
result[i] += lse_scale * gOaccum(split, lane_idx + i*32);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cudaTriggerProgrammaticLaunchCompletion();
|
||||
|
||||
const int q_seq_idx = m_block_idx*BLOCK_SIZE_M + warp_idx;
|
||||
const int k_head_idx = q_seq_idx / params.q_seq_per_hk;
|
||||
auto o_ptr = reinterpret_cast<ElementT *>(params.o_ptr) + batch_idx*params.o_batch_stride + k_head_idx*params.o_head_stride + (q_seq_idx%params.q_seq_per_hk)*params.o_row_stride;
|
||||
Tensor gO = make_tensor(
|
||||
make_gmem_ptr(o_ptr),
|
||||
Shape<Int<HEAD_DIM_V>>{},
|
||||
Stride<_1>{}
|
||||
);
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < ELEMS_PER_THREAD; ++i)
|
||||
gO(lane_idx+i*32) = (ElementT)result[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#define MLA_NUM_SPLITS_SWITCH(NUM_SPLITS, NAME, ...) \
|
||||
[&] { \
|
||||
if (NUM_SPLITS <= 32) { \
|
||||
constexpr static int NAME = 32; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 64) { \
|
||||
constexpr static int NAME = 64; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 96) { \
|
||||
constexpr static int NAME = 96; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 128) { \
|
||||
constexpr static int NAME = 128; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 160) { \
|
||||
constexpr static int NAME = 160; \
|
||||
return __VA_ARGS__(); \
|
||||
} else { \
|
||||
FLASH_ASSERT(false); \
|
||||
} \
|
||||
}()
|
||||
|
||||
|
||||
template<typename ElementT>
|
||||
void run_flash_mla_combine_kernel(Flash_fwd_mla_params ¶ms, cudaStream_t stream) {
|
||||
MLA_NUM_SPLITS_SWITCH(params.num_sm_parts, NUM_SPLITS, [&] {
|
||||
constexpr int BLOCK_SIZE_M = 8;
|
||||
constexpr int NUM_THREADS = BLOCK_SIZE_M*32;
|
||||
constexpr size_t smem_size = BLOCK_SIZE_M*(NUM_SPLITS+1)*sizeof(float);
|
||||
auto combine_kernel = &flash_fwd_mla_combine_kernel<ElementT, Config::HEAD_DIM_V, BLOCK_SIZE_M, NUM_SPLITS, NUM_THREADS>;
|
||||
CHECK_CUDA(cudaFuncSetAttribute(combine_kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
|
||||
// Use cudaLaunchKernelEx to enable PDL (Programmatic Dependent Launch)
|
||||
cudaLaunchAttribute attribute[1];
|
||||
attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
|
||||
attribute[0].val.programmaticStreamSerializationAllowed = 1;
|
||||
cudaLaunchConfig_t combine_kernel_config = {
|
||||
dim3(params.b, cute::ceil_div(params.h_k*params.q_seq_per_hk, BLOCK_SIZE_M), 1),
|
||||
dim3(NUM_THREADS, 1, 1),
|
||||
smem_size,
|
||||
stream,
|
||||
attribute,
|
||||
1
|
||||
};
|
||||
cudaLaunchKernelEx(&combine_kernel_config, combine_kernel, params);
|
||||
});
|
||||
CHECK_CUDA_KERNEL_LAUNCH();
|
||||
}
|
||||
|
||||
template void run_flash_mla_combine_kernel<cutlass::bfloat16_t>(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
|
||||
#ifndef FLASH_MLA_DISABLE_FP16
|
||||
template void run_flash_mla_combine_kernel<cutlass::half_t>(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
#endif
|
||||
6
csrc/kernels/mla_combine.h
Normal file
6
csrc/kernels/mla_combine.h
Normal file
@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "flash_mla.h"
|
||||
|
||||
template<typename ElementT>
|
||||
void run_flash_mla_combine_kernel(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
1349
csrc/kernels/splitkv_mla.cu
Normal file
1349
csrc/kernels/splitkv_mla.cu
Normal file
File diff suppressed because it is too large
Load Diff
6
csrc/kernels/splitkv_mla.h
Normal file
6
csrc/kernels/splitkv_mla.h
Normal file
@ -0,0 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include "flash_mla.h"
|
||||
|
||||
template<typename InputT>
|
||||
void run_flash_splitkv_mla_kernel(Flash_fwd_mla_params ¶ms, cudaStream_t stream);
|
||||
106
csrc/kernels/traits.h
Normal file
106
csrc/kernels/traits.h
Normal file
@ -0,0 +1,106 @@
|
||||
#pragma once
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
#include <cutlass/barrier.h>
|
||||
|
||||
#include "config.h"
|
||||
|
||||
using TMABarrier = cutlass::arch::ClusterTransactionBarrier;
|
||||
using namespace cute;
|
||||
|
||||
template<typename InputT_>
|
||||
struct Traits {
|
||||
using InputT = InputT_;
|
||||
|
||||
static constexpr int BLOCK_SIZE_M = Config::BLOCK_SIZE_M;
|
||||
static constexpr int PAGE_BLOCK_SIZE = Config::PAGE_BLOCK_SIZE;
|
||||
static constexpr int HEAD_DIM_K = Config::HEAD_DIM_K;
|
||||
static constexpr int HEAD_DIM_V = Config::HEAD_DIM_V;
|
||||
|
||||
static constexpr int NUM_THREADS = 256;
|
||||
|
||||
static_assert(std::is_same_v<InputT, cutlass::bfloat16_t> || std::is_same_v<InputT, cutlass::half_t>);
|
||||
|
||||
using TiledMMA_QK_sQ = decltype(make_tiled_mma(
|
||||
GMMA::ss_op_selector<InputT, InputT, float, Shape<Int<BLOCK_SIZE_M>, Int<PAGE_BLOCK_SIZE>, Int<HEAD_DIM_K>>, GMMA::Major::K, GMMA::Major::K>(),
|
||||
Layout<Shape<_1, _1, _1>>{}
|
||||
));
|
||||
|
||||
using TiledMMA_QK_rQ = decltype(make_tiled_mma(
|
||||
GMMA::rs_op_selector<InputT, InputT, float, Shape<Int<BLOCK_SIZE_M>, Int<PAGE_BLOCK_SIZE>, Int<HEAD_DIM_K>>, GMMA::Major::K, GMMA::Major::K>(),
|
||||
Layout<Shape<_1, _1, _1>>{}
|
||||
));
|
||||
|
||||
using TiledMMA_PV_LocalP = decltype(make_tiled_mma(
|
||||
GMMA::rs_op_selector<InputT, InputT, float, Shape<Int<BLOCK_SIZE_M>, Int<HEAD_DIM_V/2>, Int<PAGE_BLOCK_SIZE>>, GMMA::Major::K, GMMA::Major::MN>(),
|
||||
Layout<Shape<_1, _1, _1>>{}
|
||||
));
|
||||
|
||||
using TiledMMA_PV_RemoteP = decltype(make_tiled_mma(
|
||||
GMMA::ss_op_selector<InputT, InputT, float, Shape<Int<BLOCK_SIZE_M>, Int<HEAD_DIM_V/2>, Int<PAGE_BLOCK_SIZE>>, GMMA::Major::K, GMMA::Major::MN>(),
|
||||
Layout<Shape<_1, _1, _1>>{}
|
||||
));
|
||||
|
||||
using SmemLayoutQ = decltype(tile_to_shape(
|
||||
GMMA::Layout_K_SW128_Atom<InputT>{},
|
||||
Shape<Int<BLOCK_SIZE_M>, Int<HEAD_DIM_K>>{}
|
||||
));
|
||||
|
||||
using SmemLayoutK = decltype(tile_to_shape(
|
||||
GMMA::Layout_K_SW128_Atom<InputT>{},
|
||||
Shape<Int<PAGE_BLOCK_SIZE>, Int<HEAD_DIM_K>>{}
|
||||
));
|
||||
|
||||
using SmemLayoutV = decltype(composition(
|
||||
SmemLayoutK{},
|
||||
make_layout(Shape<Int<HEAD_DIM_V>, Int<PAGE_BLOCK_SIZE>>{}, GenRowMajor{})
|
||||
)); // A transposed version of SmemLayoutK
|
||||
|
||||
using SmemLayoutP0 = decltype(tile_to_shape(
|
||||
GMMA::Layout_K_SW128_Atom<InputT>{},
|
||||
Shape<Int<BLOCK_SIZE_M>, Int<PAGE_BLOCK_SIZE>>{}
|
||||
));
|
||||
|
||||
using rP0Layout = decltype(layout(partition_fragment_C(
|
||||
TiledMMA_QK_sQ{},
|
||||
Shape<Int<BLOCK_SIZE_M>, Int<PAGE_BLOCK_SIZE>>{}
|
||||
)));
|
||||
|
||||
struct SharedMemoryPlan {
|
||||
cute::array_aligned<InputT, cosize_v<SmemLayoutQ>> smem_sQ;
|
||||
cute::array_aligned<InputT, cosize_v<SmemLayoutK>> smem_sK0;
|
||||
cute::array_aligned<InputT, cosize_v<SmemLayoutK>> smem_sK1;
|
||||
cute::array_aligned<InputT, cosize_v<SmemLayoutP0>> smem_sP0;
|
||||
cute::array_aligned<float, BLOCK_SIZE_M> smem_sM;
|
||||
cute::array_aligned<float, 2*BLOCK_SIZE_M> sL_reduction_wksp;
|
||||
cute::array_aligned<float, BLOCK_SIZE_M> smem_sScale0;
|
||||
cute::array_aligned<float, BLOCK_SIZE_M> smem_sScale1;
|
||||
TMABarrier barriers_K0[HEAD_DIM_K/64];
|
||||
TMABarrier barriers_K1[HEAD_DIM_K/64];
|
||||
TMABarrier barrier_Q;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
template<
|
||||
typename ShapeQ, typename TMA_Q,
|
||||
typename ShapeK, typename TMA_K,
|
||||
typename ShapeO, typename TMA_O
|
||||
>
|
||||
struct TmaParams {
|
||||
ShapeQ shape_Q;
|
||||
TMA_Q tma_Q;
|
||||
ShapeK shape_K;
|
||||
TMA_K tma_K;
|
||||
ShapeO shape_O;
|
||||
TMA_O tma_O;
|
||||
};
|
||||
|
||||
enum NamedBarriers : int {
|
||||
sScale0Ready = 0,
|
||||
sScale1Ready = 1,
|
||||
sP0Ready = 2,
|
||||
rO1sP0sV0RIssued = 3
|
||||
};
|
||||
@ -5,7 +5,7 @@
|
||||
cudaError_t status_ = call; \
|
||||
if (status_ != cudaSuccess) { \
|
||||
fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_)); \
|
||||
exit(1); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
@ -29,37 +29,4 @@
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
|
||||
#define BOOL_SWITCH(COND, CONST_NAME, ...) \
|
||||
[&] { \
|
||||
if (COND) { \
|
||||
constexpr static bool CONST_NAME = true; \
|
||||
return __VA_ARGS__(); \
|
||||
} else { \
|
||||
constexpr static bool CONST_NAME = false; \
|
||||
return __VA_ARGS__(); \
|
||||
} \
|
||||
}()
|
||||
|
||||
|
||||
#define MLA_NUM_SPLITS_SWITCH(NUM_SPLITS, NAME, ...) \
|
||||
[&] { \
|
||||
if (NUM_SPLITS <= 32) { \
|
||||
constexpr static int NAME = 32; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 64) { \
|
||||
constexpr static int NAME = 64; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 96) { \
|
||||
constexpr static int NAME = 96; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 128) { \
|
||||
constexpr static int NAME = 128; \
|
||||
return __VA_ARGS__(); \
|
||||
} else if (NUM_SPLITS <= 160) { \
|
||||
constexpr static int NAME = 160; \
|
||||
return __VA_ARGS__(); \
|
||||
} else { \
|
||||
FLASH_ASSERT(false); \
|
||||
} \
|
||||
}()
|
||||
#define println(fmt, ...) { print(fmt, ##__VA_ARGS__); print("\n"); }
|
||||
@ -1,15 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/barrier.h"
|
||||
|
||||
namespace flash {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// Enumerates the reserved named barriers to avoid potential conflicts
|
||||
|
||||
enum class NamedBarriers {
|
||||
SReady = 1,
|
||||
SoftmaxReady = 2,
|
||||
};
|
||||
|
||||
} // flash
|
||||
200
csrc/softmax.h
200
csrc/softmax.h
@ -1,200 +0,0 @@
|
||||
// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/csrc/flash_attn/src/softmax.h
|
||||
/******************************************************************************
|
||||
* Copyright (c) 2024, Tri Dao.
|
||||
******************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <cutlass/numeric_types.h>
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
namespace flash {
|
||||
|
||||
using namespace cute;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
||||
__device__ __forceinline__ void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
||||
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
||||
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
||||
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0>(tensor); mi++) {
|
||||
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
|
||||
#pragma unroll
|
||||
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
||||
summary(mi) = op(summary(mi), tensor(mi, ni));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
||||
__device__ __forceinline__ void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
|
||||
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < size(dst); i++){
|
||||
dst(i) = Allreduce<4>::run(src(i), op);
|
||||
}
|
||||
}
|
||||
|
||||
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
|
||||
__device__ __forceinline__ void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
|
||||
thread_reduce_<zero_init>(tensor, summary, op);
|
||||
quad_allreduce_(summary, summary, op);
|
||||
}
|
||||
|
||||
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
||||
__device__ __forceinline__ void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
|
||||
MaxOp<float> max_op;
|
||||
reduce_<zero_init>(tensor, max, max_op);
|
||||
}
|
||||
|
||||
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
||||
__device__ __forceinline__ void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
|
||||
SumOp<float> sum_op;
|
||||
thread_reduce_<zero_init>(tensor, sum, sum_op);
|
||||
}
|
||||
|
||||
// Apply the exp to all the elements.
|
||||
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
||||
__forceinline__ __device__ auto scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
|
||||
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
||||
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
||||
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
||||
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
||||
// We don't want (-inf - (-inf)) since that would give NaN.
|
||||
// If we don't have float around M_LOG2E the multiplication is done in fp64.
|
||||
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
|
||||
#pragma unroll
|
||||
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
||||
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
||||
// max * log_2(e)) This allows the compiler to use the ffma
|
||||
// instruction instead of fadd and fmul separately.
|
||||
// The following macro will disable the use of fma.
|
||||
// See: https://github.com/pytorch/pytorch/issues/121558 for more details
|
||||
// This macro is set in PyTorch and not FlashAttention
|
||||
#ifdef UNFUSE_FMA
|
||||
tensor(mi, ni) = exp2f(__fmul_rn(tensor(mi, ni), scale) - max_scaled);
|
||||
#else
|
||||
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
return tensor;
|
||||
}
|
||||
|
||||
// Apply the exp to all the elements.
|
||||
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
|
||||
__forceinline__ __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
|
||||
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
|
||||
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
|
||||
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0>(tensor); ++mi) {
|
||||
MaxOp<float> max_op;
|
||||
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
|
||||
#pragma unroll
|
||||
for (int ni = 1; ni < size<1>(tensor); ni++) {
|
||||
max(mi) = max_op(max(mi), tensor(mi, ni));
|
||||
}
|
||||
max(mi) = Allreduce<4>::run(max(mi), max_op);
|
||||
// If max is -inf, then all elements must have been -inf (possibly due to masking).
|
||||
// We don't want (-inf - (-inf)) since that would give NaN.
|
||||
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
|
||||
sum(mi) = 0;
|
||||
#pragma unroll
|
||||
for (int ni = 0; ni < size<1>(tensor); ++ni) {
|
||||
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
|
||||
// max * log_2(e)) This allows the compiler to use the ffma
|
||||
// instruction instead of fadd and fmul separately.
|
||||
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
|
||||
sum(mi) += tensor(mi, ni);
|
||||
}
|
||||
SumOp<float> sum_op;
|
||||
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename Tensor0, typename Tensor1>
|
||||
__forceinline__ __device__ void rescale_o(Tensor0 &acc_o, Tensor1 &scale_o) {
|
||||
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
|
||||
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size(scale_o); ++mi) {
|
||||
#pragma unroll
|
||||
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale_o(mi); }
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <int kNRows>
|
||||
struct Softmax {
|
||||
|
||||
using TensorT = decltype(make_tensor<float>(Shape<Int<kNRows>>{}));
|
||||
TensorT row_max, row_sum;
|
||||
|
||||
__forceinline__ __device__ Softmax() {};
|
||||
|
||||
template<bool Is_first, bool Check_inf=false, typename Tensor0>
|
||||
__forceinline__ __device__ TensorT softmax(Tensor0 &acc_s, float softmax_scale_log2) {
|
||||
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
|
||||
Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
|
||||
static_assert(decltype(size<0>(scores))::value == kNRows);
|
||||
TensorT scale_o;
|
||||
clear(scale_o);
|
||||
if (Is_first) {
|
||||
flash::template reduce_max</*zero_init=*/true>(scores, row_max);
|
||||
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
|
||||
flash::reduce_sum</*zero_init=*/true>(scores, row_sum);
|
||||
} else {
|
||||
Tensor scores_max_prev = make_fragment_like(row_max);
|
||||
cute::copy(row_max, scores_max_prev);
|
||||
flash::template reduce_max</*zero_init=*/false>(scores, row_max);
|
||||
// Reshape acc_o from (MMA=4, MMA_M, MMA_K) to (nrow=(2, MMA_M), ncol=(2, MMA_K))
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size(row_max); ++mi) {
|
||||
float scores_max_cur = !Check_inf
|
||||
? row_max(mi)
|
||||
: (row_max(mi) == -INFINITY ? 0.0f : row_max(mi));
|
||||
float scores_scale = exp2f((scores_max_prev(mi) - scores_max_cur) * softmax_scale_log2);
|
||||
scale_o(mi) = scores_scale;
|
||||
row_sum(mi) *= scores_scale;
|
||||
}
|
||||
flash::scale_apply_exp2(scores, row_max, softmax_scale_log2);
|
||||
// We don't do the reduce across threads here since we don't need to use the row_sum.
|
||||
// We do that reduce at the end when we need to normalize the softmax.
|
||||
flash::reduce_sum</*zero_init=*/false>(scores, row_sum);
|
||||
}
|
||||
return scale_o;
|
||||
};
|
||||
|
||||
template<bool Is_dropout=false, bool Split=false, typename Tensor0>
|
||||
__forceinline__ __device__ TensorT normalize_softmax_lse(Tensor0 &acc_o, float softmax_scale, float rp_dropout=1.0) {
|
||||
SumOp<float> sum_op;
|
||||
quad_allreduce_(row_sum, row_sum, sum_op);
|
||||
TensorT lse = make_fragment_like(row_sum);
|
||||
// Reshape acc_s from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
|
||||
Tensor acc_o_rowcol = make_tensor(acc_o.data(), flash::convert_layout_acc_rowcol(acc_o.layout()));
|
||||
static_assert(decltype(size<0>(acc_o_rowcol))::value == kNRows);
|
||||
#pragma unroll
|
||||
for (int mi = 0; mi < size<0>(acc_o_rowcol); ++mi) {
|
||||
float sum = row_sum(mi);
|
||||
float inv_sum = (sum == 0.f || sum != sum) ? 1.f : 1.f / sum;
|
||||
lse(mi) = (sum == 0.f || sum != sum) ? (Split ? -INFINITY : INFINITY) : row_max(mi) * softmax_scale + __logf(sum);
|
||||
float scale = !Is_dropout ? inv_sum : inv_sum * rp_dropout;
|
||||
#pragma unroll
|
||||
for (int ni = 0; ni < size<1>(acc_o_rowcol); ++ni) { acc_o_rowcol(mi, ni) *= scale; }
|
||||
}
|
||||
return lse;
|
||||
};
|
||||
};
|
||||
|
||||
} // namespace flash
|
||||
241
csrc/utils.h
241
csrc/utils.h
@ -1,241 +0,0 @@
|
||||
// Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/utils.h
|
||||
/******************************************************************************
|
||||
* Copyright (c) 2024, Tri Dao.
|
||||
******************************************************************************/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include <cuda_bf16.h>
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
|
||||
#include <cutlass/array.h>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/numeric_conversion.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace flash {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T>
|
||||
struct MaxOp {
|
||||
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x > y ? x : y; }
|
||||
};
|
||||
|
||||
template <>
|
||||
struct MaxOp<float> {
|
||||
// This is slightly faster
|
||||
__device__ __forceinline__ float operator()(float const &x, float const &y) { return max(x, y); }
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T>
|
||||
struct SumOp {
|
||||
__device__ __forceinline__ T operator()(T const & x, T const & y) { return x + y; }
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<int THREADS>
|
||||
struct Allreduce {
|
||||
static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
|
||||
template<typename T, typename Operator>
|
||||
static __device__ __forceinline__ T run(T x, Operator &op) {
|
||||
constexpr int OFFSET = THREADS / 2;
|
||||
x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
|
||||
return Allreduce<OFFSET>::run(x, op);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<>
|
||||
struct Allreduce<2> {
|
||||
template<typename T, typename Operator>
|
||||
static __device__ __forceinline__ T run(T x, Operator &op) {
|
||||
x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <bool zero_init=false, int wg_wait=0, bool arrive=true, bool commit=true, typename Tensor0, typename Tensor1, typename Tensor2, typename TiledMma>
|
||||
__forceinline__ __device__ void gemm(TiledMma &tiled_mma, Tensor0 const &tCrA, Tensor1 const &tCrB, Tensor2 &tCrC) {
|
||||
constexpr bool Is_RS = !cute::is_base_of<cute::GMMA::DescriptorIterator, typename TiledMma::FrgTypeA>::value;
|
||||
// Need to cast away const on tCrA since warpgroup_fence_operand doesn't take const
|
||||
if constexpr (Is_RS) { cute::warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
||||
warpgroup_fence_operand(tCrC);
|
||||
if constexpr (arrive) {
|
||||
warpgroup_arrive();
|
||||
}
|
||||
if constexpr (zero_init) {
|
||||
tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
|
||||
// Unroll the K mode manually to set scale D to 1
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
||||
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
||||
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
||||
}
|
||||
} else {
|
||||
// cute::gemm(tiled_mma, tCrA, tCrB, tCrC);
|
||||
// Unroll the K mode manually to set scale D to 1
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
|
||||
cute::gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
|
||||
tiled_mma.accumulate_ = GMMA::ScaleOut::One;
|
||||
}
|
||||
}
|
||||
if constexpr (commit) {
|
||||
warpgroup_commit_batch();
|
||||
}
|
||||
if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
|
||||
warpgroup_fence_operand(tCrC);
|
||||
if constexpr (Is_RS) { warpgroup_fence_operand(const_cast<Tensor0 &>(tCrA)); }
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, MMA_N))
|
||||
// For SM90, convert acc_layout from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
|
||||
template<bool Transposed=false, typename Layout0>
|
||||
__forceinline__ __device__ auto convert_layout_acc_rowcol(Layout0 acc_layout) {
|
||||
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
||||
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
||||
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
||||
static_assert(decltype(rank(acc_layout))::value == 3);
|
||||
auto l = acc_layout;
|
||||
if constexpr (!Transposed) {
|
||||
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)));
|
||||
} else {
|
||||
return make_layout(make_layout(get<0, 0>(l), get<0, 2>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
|
||||
}
|
||||
|
||||
} else { // SM80
|
||||
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
||||
static_assert(decltype(rank(acc_layout))::value == 3);
|
||||
auto l = logical_divide(acc_layout, Shape<_2>{}); // ((2, 2), MMA_M, MMA_N)
|
||||
if constexpr (!Transposed) {
|
||||
return make_layout(make_layout(get<0, 1>(l), get<1>(l)), make_layout(get<0, 0>(l), get<2>(l)));
|
||||
} else {
|
||||
return make_layout(make_layout(get<0, 0>(l), get<2>(l)), make_layout(get<0, 1>(l), get<1>(l)));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// For SM80, convert acc_layout from (MMA=4, MMA_M, MMA_N) to ((4, 2), MMA_M, MMA_N / 2)
|
||||
// if using m16n8k16, or to (4, MMA_M, MMA_N) if using m16n8k8.
|
||||
// For SM90, FP16/BF16, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((2, 2, 2), MMA_M, (N / 16, MMA_N))
|
||||
// For SM90, FP8, convert acc_layout from ((2, 2, N / 8), MMA_M, MMA_N) to ((4, 2, 2), MMA_M, (N / 32, MMA_N))
|
||||
template<typename MMA_Traits, typename Layout0>
|
||||
__forceinline__ __device__ auto convert_layout_acc_Aregs(Layout0 acc_layout) {
|
||||
using X = Underscore;
|
||||
if constexpr (decltype(rank<0>(acc_layout))::value == 3) { // SM90
|
||||
static_assert(decltype(size<0, 0>(acc_layout))::value == 2);
|
||||
static_assert(decltype(size<0, 1>(acc_layout))::value == 2);
|
||||
static_assert(decltype(rank(acc_layout))::value == 3);
|
||||
static_assert(decltype(rank(get<0>(acc_layout)))::value == 3);
|
||||
if constexpr (sizeof(typename MMA_Traits::ValTypeA) == 2) {
|
||||
auto l = logical_divide(get<0, 2>(acc_layout), Tile<_2>{}); // ((2, N / 16))
|
||||
return make_layout(make_layout(get<0, 0>(acc_layout), get<0, 1>(acc_layout), get<0, 0>(l)), get<1>(acc_layout), coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
|
||||
} else {
|
||||
static_assert(sizeof(typename MMA_Traits::ValTypeA) == 1);
|
||||
static_assert(decltype(stride<0, 0>(acc_layout))::value == 1);
|
||||
static_assert(decltype(stride<0, 1>(acc_layout))::value == 2);
|
||||
auto l = logical_divide(get<0, 2>(acc_layout), Tile<Layout<Shape<_2, _2>>>{}); // (((2, 2), N / 32))
|
||||
// This combines the first two modes (<0, 0> and <0, 1>) into one mode.
|
||||
// Will require register shuffling later to be correct.
|
||||
return make_layout(make_layout(Layout<_4>{}, get<0, 0, 0>(l), get<0, 0, 1>(l)),
|
||||
get<1>(acc_layout),
|
||||
coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout)))); // ((4, 2, 2), MMA_M, N / 32 * MMA_N)
|
||||
// This combination is right but doesn't work with register shuffling.
|
||||
// return make_layout(make_layout(coalesce(make_layout(get<0, 0>(acc_layout), get<0, 0, 0>(l))), get<0, 1>(acc_layout), get<0, 0, 1>(l)),
|
||||
// get<1>(acc_layout),
|
||||
// coalesce(make_layout(get<0, 1>(l), get<2>(acc_layout))));
|
||||
}
|
||||
} else { // SM80
|
||||
static_assert(decltype(size<0>(acc_layout))::value == 4);
|
||||
static_assert(decltype(rank(acc_layout))::value == 3);
|
||||
constexpr int mma_shape_K = get<2>(typename MMA_Traits::Shape_MNK{});
|
||||
static_assert(mma_shape_K == 8 || mma_shape_K == 16);
|
||||
if constexpr (mma_shape_K == 8) {
|
||||
return acc_layout;
|
||||
} else {
|
||||
auto l = logical_divide(acc_layout, Shape<X, X, _2>{}); // (4, MMA_M, (2, MMA_N / 2)))
|
||||
return make_layout(make_layout(get<0>(l), get<2, 0>(l)), get<1>(l), get<2, 1>(l));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename To_type, typename Engine, typename Layout>
|
||||
__forceinline__ __device__ auto convert_type(Tensor<Engine, Layout> const &tensor) {
|
||||
using From_type = typename Engine::value_type;
|
||||
constexpr int numel = decltype(size(tensor))::value;
|
||||
cutlass::NumericArrayConverter<To_type, From_type, numel> convert_op;
|
||||
// HACK: this requires tensor to be "contiguous"
|
||||
auto frag = convert_op(*reinterpret_cast<const cutlass::Array<From_type, numel> *>(tensor.data()));
|
||||
return make_tensor(make_rmem_ptr<To_type>(&frag), tensor.layout());
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Blocks until all but N previous cp.async.commit_group operations have committed.
|
||||
// This differs from cute::cp_async_wait in that when N = 0 we don't call cp.async.wait_all
|
||||
// (which is equivalent to commit_group then wait_group 0).
|
||||
// Instead we just call cp.async.wait_group 0, which is slightly faster.
|
||||
// https://github.com/NVIDIA/cutlass/blob/master/include/cute/arch/copy_sm80.hpp#L113
|
||||
template <int N>
|
||||
CUTE_HOST_DEVICE
|
||||
void cp_async_wait() {
|
||||
#if defined(CUTE_ARCH_CP_ASYNC_SM80_ENABLED)
|
||||
asm volatile("cp.async.wait_group %0;\n" :: "n"(N));
|
||||
#endif
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <bool Is_even_MN=true, bool Is_even_K=true, bool Clear_OOB_MN=false, bool Clear_OOB_K=true,
|
||||
typename TiledCopy, typename Engine0, typename Layout0, typename Engine1, typename Layout1,
|
||||
typename Engine2, typename Layout2, typename Engine3, typename Layout3>
|
||||
__forceinline__ __device__ void copy(TiledCopy tiled_copy, Tensor<Engine0, Layout0> const &S,
|
||||
Tensor<Engine1, Layout1> &D, Tensor<Engine2, Layout2> const &identity_MN,
|
||||
Tensor<Engine3, Layout3> const &predicate_K, const int max_MN=0) {
|
||||
CUTE_STATIC_ASSERT_V(rank(S) == Int<3>{});
|
||||
CUTE_STATIC_ASSERT_V(rank(D) == Int<3>{});
|
||||
CUTE_STATIC_ASSERT_V(size<0>(S) == size<0>(D)); // MMA
|
||||
CUTE_STATIC_ASSERT_V(size<1>(S) == size<1>(D)); // MMA_M
|
||||
CUTE_STATIC_ASSERT_V(size<2>(S) == size<2>(D)); // MMA_K
|
||||
// There's no case where !Clear_OOB_K && Clear_OOB_MN
|
||||
static_assert(!(Clear_OOB_MN && !Clear_OOB_K));
|
||||
#pragma unroll
|
||||
for (int m = 0; m < size<1>(S); ++m) {
|
||||
if (Is_even_MN || get<0>(identity_MN(0, m, 0)) < max_MN) {
|
||||
#pragma unroll
|
||||
for (int k = 0; k < size<2>(S); ++k) {
|
||||
if (Is_even_K || predicate_K(k)) {
|
||||
cute::copy(tiled_copy, S(_, m, k), D(_, m, k));
|
||||
} else if (Clear_OOB_K) {
|
||||
cute::clear(D(_, m, k));
|
||||
}
|
||||
}
|
||||
} else if (Clear_OOB_MN) {
|
||||
cute::clear(D(_, m, _));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace flash
|
||||
@ -55,7 +55,6 @@ def flash_mla_with_kvcache(
|
||||
out, softmax_lse = flash_mla_cuda.fwd_kvcache_mla(
|
||||
q,
|
||||
k_cache,
|
||||
None,
|
||||
head_dim_v,
|
||||
cache_seqlens,
|
||||
block_table,
|
||||
|
||||
25
setup.py
25
setup.py
@ -11,29 +11,13 @@ from torch.utils.cpp_extension import (
|
||||
IS_WINDOWS,
|
||||
)
|
||||
|
||||
DISABLE_FP16 = os.getenv("FLASH_MLA_DISABLE_FP16", "FALSE") == "TRUE"
|
||||
|
||||
|
||||
def append_nvcc_threads(nvcc_extra_args):
|
||||
nvcc_threads = os.getenv("NVCC_THREADS") or "32"
|
||||
return nvcc_extra_args + ["--threads", nvcc_threads]
|
||||
|
||||
|
||||
def get_sources():
|
||||
sources = [
|
||||
"csrc/flash_api.cpp",
|
||||
"csrc/flash_fwd_mla_bf16_sm90.cu",
|
||||
"csrc/flash_fwd_mla_metadata.cu",
|
||||
]
|
||||
|
||||
if not DISABLE_FP16:
|
||||
sources.append("csrc/flash_fwd_mla_fp16_sm90.cu")
|
||||
|
||||
return sources
|
||||
|
||||
|
||||
def get_features_args():
|
||||
features_args = []
|
||||
DISABLE_FP16 = os.getenv("FLASH_MLA_DISABLE_FP16", "FALSE") in ["TRUE", "1"]
|
||||
if DISABLE_FP16:
|
||||
features_args.append("-DFLASH_MLA_DISABLE_FP16")
|
||||
return features_args
|
||||
@ -56,7 +40,12 @@ ext_modules = []
|
||||
ext_modules.append(
|
||||
CUDAExtension(
|
||||
name="flash_mla_cuda",
|
||||
sources=get_sources(),
|
||||
sources=[
|
||||
"csrc/flash_api.cpp",
|
||||
"csrc/kernels/get_mla_metadata.cu",
|
||||
"csrc/kernels/mla_combine.cu",
|
||||
"csrc/kernels/splitkv_mla.cu",
|
||||
],
|
||||
extra_compile_args={
|
||||
"cxx": cxx_args + get_features_args(),
|
||||
"nvcc": append_nvcc_threads(
|
||||
|
||||
Loading…
Reference in New Issue
Block a user