import json import os import torch import argparse import random from transformers import AutoModelForCausalLM, AutoTokenizer from utils import get_formatted_input_and_target import torch.multiprocessing as mp from itertools import accumulate from accelerate import dispatch_model def infer_auto_device_map(model, pp_splits, visible_devices): assert len(pp_splits) == len(visible_devices) device_map = { "model.embed_tokens": 0, "model.norm": len(pp_splits) - 1, "lm_head": len(pp_splits) - 1 } assert len(model.model.layers) == sum(pp_splits) pp_splits = [0, *list(accumulate(pp_splits))] for idx, (start, end) in enumerate(zip(pp_splits[:-1], pp_splits[1:])): for i in range(start, end): device_map.update({f"model.layers.{i}": idx}) for k, v in device_map.items(): device_map[k] = visible_devices[v] return device_map def eval_expert(rank, args, model, dataset): try: print(f"Rank {rank} starting expert evaluation...", flush=True) tokenizer = AutoTokenizer.from_pretrained(args.base_model_path) visible_devices = list(range(rank * args.gpus_per_rank, (rank + 1) * args.gpus_per_rank)) device_map = infer_auto_device_map(model, [14, 13], visible_devices) model = dispatch_model(model, device_map) model.config.expert_log_dir = os.path.join(args.output_dir, f"rank_{rank}") n_sample_tokens = args.n_sample_tokens // args.world_size os.makedirs(os.path.join(args.output_dir, f"rank_{rank}"), exist_ok=True) done_tokens = 0 cur_dataset = dataset[rank::args.world_size] for instance in cur_dataset: input_ids, target_ids = get_formatted_input_and_target(instance['messages'], tokenizer, -100) model(input_ids=torch.tensor(input_ids).unsqueeze(0), labels=torch.tensor(target_ids).unsqueeze(0)) done_tokens += len(input_ids) if done_tokens >= n_sample_tokens: break except Exception as e: print(f"Error in process {rank}: {e}", flush=True) raise if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate a model with adapters on a specified dataset.") parser.add_argument("--eval_dataset", type=str, required=True, help="Name of the evaluation dataset") parser.add_argument("--base_model_path", type=str, required=True, help="Path to the base model") parser.add_argument("--output_dir", type=str, required=True, help="Path to save the evaluation results") parser.add_argument("--world_size", type=int, default=4, help="Number of processes to use for evaluation") parser.add_argument("--gpus_per_rank", type=int, default=2, help="Number of GPUs per process") parser.add_argument("--n_sample_tokens", type=int, required=True, help="Token to sample for expert evaluation") args = parser.parse_args() random.seed(5934875) print("Loading base model...") model = AutoModelForCausalLM.from_pretrained(args.base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) # not using tokenizer here to aviod deadlock model.config.log_expert_weights = True print(f"Running expert evaluation on {args.eval_dataset}...") dataset = [json.loads(i) for i in open(f"datasets/train/{args.eval_dataset}.jsonl").readlines()] random.shuffle(dataset) print("Start Evaluating...") mp.spawn(eval_expert, args=(args, model, dataset), nprocs=args.world_size, join=True)