# Expert-Specialized Fine-Tuning Official Repo for paper [Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models](https://arxiv.org/abs/2407.01906) by [Zihan Wang](https://zihanwang314.github.io), [Deli Chen](https://victorchen96.github.io/chendeli.io/), [Damai Dai](https://scholar.google.com.hk/citations?user=8b-ysf0NWVoC&hl=zh-CN), [Runxin Xu](https://runxinxu.github.io/aboutme/), [Zhuoshu Li](http://www.idi.zju.edu.cn/member/3053.html) and Y. Wu. **ESFT** aims to efficiently customize Large Language Models (LLMs) with Mixture-of-Experts (MoE) architecture by adjusting only task-relevant parts, improving efficiency and performance while using fewer resources and storage. ## πŸ“° News πŸ“… **2024.8.11:** We now release the **ESFT training code**! ✨ You can now try it with your own models and dataset! ## πŸš€ Quick Start ### Installation and Setup ```bash git clone https://github.com/deepseek-ai/ESFT.git cd esft ``` ### Install required dependencies ```bash pip install transformers torch safetensors accelerate ``` ### Download necessary adapters ```bash bash scripts/download_adapters.sh ``` ## πŸ”§Key Scripts 1. **eval_multigpu.py** This script evaluates the performance of the model on various datasets. See **scripts/eval.sh** for detailed configs and explanations. **Usage:** ```bash python eval_multigpu.py \ --eval_dataset=translation \ --base_model_path=deepseek-ai/ESFT-vanilla-lite \ --adapter_dir=all_models/adapters/token/translation \ --output_path=results/completions/token/translation.jsonl \ --openai_api_key=YOUR_OPENAI_API_KEY ``` 2. **get_expert_scores.py** This script calculates the scores for each expert based on the evaluation datasets. **Usage:** ```bash python scripts/expert/get_expert_scores.py \ --eval_dataset=translation \ --base_model_path=deepseek-ai/ESFT-vanilla-lite \ --output_dir=results/expert_scores/translation \ --n_sample_tokens=131072 \ --world_size=4 \ --gpus_per_rank=2 ``` 3. **generate_expert_config.py** This script generates the configuration to convert a MoE model with only task-relevant tasks trained based on evaluation scores. **Usage:** ```bash python scripts/expert/generate_expert_config.py \ --eval_datasets=intent,summary,law,translation \ --expert_scores_dir=results/expert_scores \ --output_dir=results/expert_configs \ --score_function=token \ --top_p=0.2 # the scoring function and top_p are hyperparameters ``` 4. **train.py** and **train_ep.py** This script trains the model with the expert configuration generated by the previous script. The train_ep.py file uses expert parallel and has been optimized for multi-GPU training. **Usage:** ```bash python train.py \ --base_model_path=deepseek-ai/ESFT-vanilla-lite \ --expert_config=results/expert_configs/intent.json \ --train_dataset=intent \ --train_config=configs/base.yaml \ --output_dir=results/checkpoints/intent torchrun --nproc-per-node=8 train_ep.py \ --base_model_path=deepseek-ai/ESFT-vanilla-lite \ --expert_config=results/expert_configs/translation.json \ --train_dataset=translation \ --train_config=configs/base.yaml \ --output_dir=results/checkpoints/translation ``` ## Contact and Support For bug reports, feature requests, and general inquiries, please open an issue on our GitHub Issues page. Make sure to include as much detail as possible to help us address your issue quickly. ## 🌟Todo list - β˜‘οΈ πŸ“ Update models, evaluation scripts, and expert selection scripts - β˜‘οΈ πŸ”§ Update training scripts - πŸ”² πŸš€ More... ## πŸ“šCitation If you find our code or paper useful, please cite: ```bash @article{wang2024letexpertsticklast, title={Let the Expert Stick to His Last: Expert-Specialized Fine-Tuning for Sparse Architectural Large Language Models}, author={Zihan Wang and Deli Chen and Damai Dai and Runxin Xu and Zhuoshu Li and Y. Wu}, year={2024}, eprint={2407.01906}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.01906}, } ```