EPLB/eplb.py
2025-02-27 17:37:47 +08:00

165 lines
7.6 KiB
Python

from typing import Tuple
import torch
def balanced_packing(weight: torch.Tensor, num_packs: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs
are as balanced as possible.
Parameters:
weight: [X, n], the weight of each item
num_packs: number of packs
Returns:
pack_index: [X, n], the pack index of each item
rank_in_pack: [X, n], the rank of the item in the pack
"""
num_layers, num_groups = weight.shape
assert num_groups % num_packs == 0
groups_per_pack = num_groups // num_packs
if groups_per_pack == 1:
pack_index = torch.arange(weight.size(-1), dtype=torch.int64, device=weight.device).expand(weight.shape)
rank_in_pack = torch.zeros_like(weight, dtype=torch.int64)
return pack_index, rank_in_pack
indices = weight.float().sort(-1, descending=True).indices.cpu()
pack_index = torch.full_like(weight, fill_value=-1, dtype=torch.int64, device='cpu')
rank_in_pack = torch.full_like(pack_index, fill_value=-1)
for i in range(num_layers):
pack_weights = [0] * num_packs
pack_items = [0] * num_packs
for group in indices[i]:
pack = min((i for i in range(num_packs) if pack_items[i] < groups_per_pack),
key=pack_weights.__getitem__)
assert pack_items[pack] < groups_per_pack
pack_index[i, group] = pack
rank_in_pack[i, group] = pack_items[pack]
pack_weights[pack] += weight[i, group]
pack_items[pack] += 1
return pack_index, rank_in_pack
def replicate_experts(weight: torch.Tensor, num_phy: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Replicate `num_log` experts to `num_phy` replicas, such that the maximum load of all replicas is minimized.
Parameters:
weight: [X, num_log]
num_phy: total number of experts after replication
Returns:
phy2log: [X, num_phy], logical expert id of each physical expert
rank: [X, num_phy], the replica rank
logcnt: [X, num_log], number of replicas for each logical expert
"""
n, num_log = weight.shape
num_redundant = num_phy - num_log
assert num_redundant >= 0
device = weight.device
phy2log = torch.arange(num_phy, dtype=torch.int64, device=device).repeat(n, 1)
rank = torch.zeros(n, num_phy, dtype=torch.int64, device=device)
logcnt = torch.ones(n, num_log, dtype=torch.int64, device=device)
arangen = torch.arange(n, dtype=torch.int64, device=device)
for i in range(num_log, num_phy):
redundant_indices = (weight / logcnt).max(dim=-1).indices
phy2log[:, i] = redundant_indices
rank[:, i] = logcnt[arangen, redundant_indices]
logcnt[arangen, redundant_indices] += 1
return phy2log, rank, logcnt
def rebalance_experts_hierarchical(weight: torch.Tensor, num_physical_experts: int,
num_groups: int, num_nodes: int, num_gpus: int):
"""
Parameters:
weight: [num_moe_layers, num_logical_experts]
num_physical_experts: number of physical experts after replication
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [num_moe_layers, num_physical_experts]
logical_to_physical_map: [num_moe_layers, num_logical_experts, X]
logical_count: [num_moe_layers, num_logical_experts]
"""
num_layers, num_logical_experts = weight.shape
assert num_logical_experts % num_groups == 0
group_size = num_logical_experts // num_groups
assert num_groups % num_nodes == 0
groups_per_node = num_groups // num_nodes
assert num_gpus % num_nodes == 0
assert num_physical_experts % num_gpus == 0
phy_experts_per_gpu = num_physical_experts // num_gpus
def inverse(perm: torch.Tensor) -> torch.Tensor:
inv = torch.empty_like(perm)
inv.scatter_(1, perm, torch.arange(perm.size(1), dtype=torch.int64, device=perm.device).expand(perm.shape))
return inv
# Step 1: pack groups to nodes
tokens_per_group = weight.unflatten(-1, (num_groups, group_size)).sum(-1)
group_pack_index, group_rank_in_pack = balanced_packing(tokens_per_group, num_nodes)
log2mlog = (((group_pack_index * groups_per_node + group_rank_in_pack) * group_size).unsqueeze(-1) +
torch.arange(group_size, dtype=torch.int64, device=group_pack_index.device)).flatten(-2)
mlog2log = inverse(log2mlog)
# Step 2: construct redundant experts within nodes
# [num_layers * num_nodes, num_logical_experts // num_nodes]
tokens_per_mlog = weight.gather(-1, mlog2log).view(-1, num_logical_experts // num_nodes)
phy2mlog, phyrank, mlogcnt = replicate_experts(tokens_per_mlog, num_physical_experts // num_nodes)
# Step 3: pack physical_experts to GPUs
# [num_layers * num_nodes, num_physical_experts // num_nodes]
tokens_per_phy = (tokens_per_mlog / mlogcnt).gather(-1, phy2mlog)
pack_index, rank_in_pack = balanced_packing(tokens_per_phy, num_gpus // num_nodes)
phy2pphy = pack_index * phy_experts_per_gpu + rank_in_pack
pphy2phy = inverse(phy2pphy)
pphy2mlog = phy2mlog.gather(-1, pphy2phy) # [num_layers * num_nodes, num_log_per_nodes]
pphy2mlog = (pphy2mlog.view(num_layers, num_nodes, -1) +
torch.arange(0, num_logical_experts, num_logical_experts // num_nodes).view(1, -1, 1)).flatten(-2)
pphy2log = mlog2log.gather(-1, pphy2mlog)
pphyrank = phyrank.gather(-1, pphy2phy).view(num_layers, -1)
logcnt = mlogcnt.view(num_layers, -1).gather(-1, log2mlog)
return pphy2log, pphyrank, logcnt
def rebalance_experts(weight: torch.Tensor, num_replicas: int, num_groups: int,
num_nodes: int, num_gpus: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Entry point for expert-parallelism load balancer.
Parameters:
weight: [layers, num_logical_experts], the load statistics for all logical experts
num_replicas: number of physical experts, must be a multiple of `num_gpus`
num_groups: number of expert groups
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
num_gpus: number of GPUs, must be a multiple of `num_nodes`
Returns:
physical_to_logical_map: [layers, num_replicas], the expert index of each replica
logical_to_physical_map: [layers, num_logical_experts, X], the replica indices for each expert
expert_count: [layers, num_logical_experts], number of physical replicas for each logical expert
"""
num_layers, num_logical_experts = weight.shape
weight = weight.float().cpu()
if num_groups % num_nodes == 0:
# use hierarchical load-balance policy
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(weight, num_replicas,
num_groups, num_nodes, num_gpus)
else:
# use global load-balance policy
phy2log, phyrank, logcnt = replicate_experts(weight, num_replicas)
maxlogcnt = logcnt.max().item()
log2phy: torch.Tensor = torch.full((num_layers, num_logical_experts, maxlogcnt),
-1, dtype=torch.int64, device=logcnt.device)
log2phy.view(num_layers, -1).scatter_(-1, phy2log * maxlogcnt + phyrank,
torch.arange(num_replicas, dtype=torch.int64, device=log2phy.device).expand(num_layers, -1))
return phy2log, log2phy, logcnt
__all__ = ['rebalance_experts']