mirror of
https://github.com/deepseek-ai/EPLB
synced 2025-04-25 08:35:50 +00:00
165 lines
7.6 KiB
Python
165 lines
7.6 KiB
Python
from typing import Tuple
|
|
|
|
import torch
|
|
|
|
def balanced_packing(weight: torch.Tensor, num_packs: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Pack n weighted objects to m packs, such that each bin contains exactly n/m objects and the weights of all packs
|
|
are as balanced as possible.
|
|
|
|
Parameters:
|
|
weight: [X, n], the weight of each item
|
|
num_packs: number of packs
|
|
|
|
Returns:
|
|
pack_index: [X, n], the pack index of each item
|
|
rank_in_pack: [X, n], the rank of the item in the pack
|
|
"""
|
|
|
|
num_layers, num_groups = weight.shape
|
|
assert num_groups % num_packs == 0
|
|
groups_per_pack = num_groups // num_packs
|
|
|
|
if groups_per_pack == 1:
|
|
pack_index = torch.arange(weight.size(-1), dtype=torch.int64, device=weight.device).expand(weight.shape)
|
|
rank_in_pack = torch.zeros_like(weight, dtype=torch.int64)
|
|
return pack_index, rank_in_pack
|
|
|
|
indices = weight.float().sort(-1, descending=True).indices.cpu()
|
|
pack_index = torch.full_like(weight, fill_value=-1, dtype=torch.int64, device='cpu')
|
|
rank_in_pack = torch.full_like(pack_index, fill_value=-1)
|
|
for i in range(num_layers):
|
|
pack_weights = [0] * num_packs
|
|
pack_items = [0] * num_packs
|
|
for group in indices[i]:
|
|
pack = min((i for i in range(num_packs) if pack_items[i] < groups_per_pack),
|
|
key=pack_weights.__getitem__)
|
|
assert pack_items[pack] < groups_per_pack
|
|
pack_index[i, group] = pack
|
|
rank_in_pack[i, group] = pack_items[pack]
|
|
pack_weights[pack] += weight[i, group]
|
|
pack_items[pack] += 1
|
|
return pack_index, rank_in_pack
|
|
|
|
|
|
def replicate_experts(weight: torch.Tensor, num_phy: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
"""
|
|
Replicate `num_log` experts to `num_phy` replicas, such that the maximum load of all replicas is minimized.
|
|
|
|
Parameters:
|
|
weight: [X, num_log]
|
|
num_phy: total number of experts after replication
|
|
|
|
Returns:
|
|
phy2log: [X, num_phy], logical expert id of each physical expert
|
|
rank: [X, num_phy], the replica rank
|
|
logcnt: [X, num_log], number of replicas for each logical expert
|
|
"""
|
|
n, num_log = weight.shape
|
|
num_redundant = num_phy - num_log
|
|
assert num_redundant >= 0
|
|
device = weight.device
|
|
phy2log = torch.arange(num_phy, dtype=torch.int64, device=device).repeat(n, 1)
|
|
rank = torch.zeros(n, num_phy, dtype=torch.int64, device=device)
|
|
logcnt = torch.ones(n, num_log, dtype=torch.int64, device=device)
|
|
arangen = torch.arange(n, dtype=torch.int64, device=device)
|
|
for i in range(num_log, num_phy):
|
|
redundant_indices = (weight / logcnt).max(dim=-1).indices
|
|
phy2log[:, i] = redundant_indices
|
|
rank[:, i] = logcnt[arangen, redundant_indices]
|
|
logcnt[arangen, redundant_indices] += 1
|
|
return phy2log, rank, logcnt
|
|
|
|
|
|
def rebalance_experts_hierarchical(weight: torch.Tensor, num_physical_experts: int,
|
|
num_groups: int, num_nodes: int, num_gpus: int):
|
|
"""
|
|
Parameters:
|
|
weight: [num_moe_layers, num_logical_experts]
|
|
num_physical_experts: number of physical experts after replication
|
|
num_groups: number of expert groups
|
|
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
|
|
num_gpus: number of GPUs, must be a multiple of `num_nodes`
|
|
|
|
Returns:
|
|
physical_to_logical_map: [num_moe_layers, num_physical_experts]
|
|
logical_to_physical_map: [num_moe_layers, num_logical_experts, X]
|
|
logical_count: [num_moe_layers, num_logical_experts]
|
|
"""
|
|
num_layers, num_logical_experts = weight.shape
|
|
assert num_logical_experts % num_groups == 0
|
|
group_size = num_logical_experts // num_groups
|
|
assert num_groups % num_nodes == 0
|
|
groups_per_node = num_groups // num_nodes
|
|
assert num_gpus % num_nodes == 0
|
|
assert num_physical_experts % num_gpus == 0
|
|
phy_experts_per_gpu = num_physical_experts // num_gpus
|
|
|
|
def inverse(perm: torch.Tensor) -> torch.Tensor:
|
|
inv = torch.empty_like(perm)
|
|
inv.scatter_(1, perm, torch.arange(perm.size(1), dtype=torch.int64, device=perm.device).expand(perm.shape))
|
|
return inv
|
|
|
|
# Step 1: pack groups to nodes
|
|
tokens_per_group = weight.unflatten(-1, (num_groups, group_size)).sum(-1)
|
|
group_pack_index, group_rank_in_pack = balanced_packing(tokens_per_group, num_nodes)
|
|
log2mlog = (((group_pack_index * groups_per_node + group_rank_in_pack) * group_size).unsqueeze(-1) +
|
|
torch.arange(group_size, dtype=torch.int64, device=group_pack_index.device)).flatten(-2)
|
|
mlog2log = inverse(log2mlog)
|
|
|
|
# Step 2: construct redundant experts within nodes
|
|
# [num_layers * num_nodes, num_logical_experts // num_nodes]
|
|
tokens_per_mlog = weight.gather(-1, mlog2log).view(-1, num_logical_experts // num_nodes)
|
|
phy2mlog, phyrank, mlogcnt = replicate_experts(tokens_per_mlog, num_physical_experts // num_nodes)
|
|
|
|
# Step 3: pack physical_experts to GPUs
|
|
# [num_layers * num_nodes, num_physical_experts // num_nodes]
|
|
tokens_per_phy = (tokens_per_mlog / mlogcnt).gather(-1, phy2mlog)
|
|
pack_index, rank_in_pack = balanced_packing(tokens_per_phy, num_gpus // num_nodes)
|
|
phy2pphy = pack_index * phy_experts_per_gpu + rank_in_pack
|
|
pphy2phy = inverse(phy2pphy)
|
|
|
|
pphy2mlog = phy2mlog.gather(-1, pphy2phy) # [num_layers * num_nodes, num_log_per_nodes]
|
|
pphy2mlog = (pphy2mlog.view(num_layers, num_nodes, -1) +
|
|
torch.arange(0, num_logical_experts, num_logical_experts // num_nodes).view(1, -1, 1)).flatten(-2)
|
|
pphy2log = mlog2log.gather(-1, pphy2mlog)
|
|
pphyrank = phyrank.gather(-1, pphy2phy).view(num_layers, -1)
|
|
logcnt = mlogcnt.view(num_layers, -1).gather(-1, log2mlog)
|
|
return pphy2log, pphyrank, logcnt
|
|
|
|
def rebalance_experts(weight: torch.Tensor, num_replicas: int, num_groups: int,
|
|
num_nodes: int, num_gpus: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Entry point for expert-parallelism load balancer.
|
|
|
|
Parameters:
|
|
weight: [layers, num_logical_experts], the load statistics for all logical experts
|
|
num_replicas: number of physical experts, must be a multiple of `num_gpus`
|
|
num_groups: number of expert groups
|
|
num_nodes: number of server nodes, where the intra-node network (e.g, NVLink) is faster
|
|
num_gpus: number of GPUs, must be a multiple of `num_nodes`
|
|
|
|
Returns:
|
|
physical_to_logical_map: [layers, num_replicas], the expert index of each replica
|
|
logical_to_physical_map: [layers, num_logical_experts, X], the replica indices for each expert
|
|
expert_count: [layers, num_logical_experts], number of physical replicas for each logical expert
|
|
"""
|
|
num_layers, num_logical_experts = weight.shape
|
|
weight = weight.float().cpu()
|
|
if num_groups % num_nodes == 0:
|
|
# use hierarchical load-balance policy
|
|
phy2log, phyrank, logcnt = rebalance_experts_hierarchical(weight, num_replicas,
|
|
num_groups, num_nodes, num_gpus)
|
|
else:
|
|
# use global load-balance policy
|
|
phy2log, phyrank, logcnt = replicate_experts(weight, num_replicas)
|
|
maxlogcnt = logcnt.max().item()
|
|
log2phy: torch.Tensor = torch.full((num_layers, num_logical_experts, maxlogcnt),
|
|
-1, dtype=torch.int64, device=logcnt.device)
|
|
log2phy.view(num_layers, -1).scatter_(-1, phy2log * maxlogcnt + phyrank,
|
|
torch.arange(num_replicas, dtype=torch.int64, device=log2phy.device).expand(num_layers, -1))
|
|
return phy2log, log2phy, logcnt
|
|
|
|
__all__ = ['rebalance_experts']
|