Go to file
2024-02-11 21:32:24 +00:00
assets chores: rebase commits 2023-12-15 17:44:44 +08:00
configs chores: rebase commits 2023-12-15 17:44:44 +08:00
docker chores: rebase commits 2023-12-15 17:44:44 +08:00
docs chores: rebase commits 2023-12-15 17:44:44 +08:00
extern chores: rebase commits 2023-12-15 17:44:44 +08:00
threestudio chores: rebase commits 2023-12-15 17:44:44 +08:00
.editorconfig chores: rebase commits 2023-12-15 17:44:44 +08:00
.gitignore chores: rebase commits 2023-12-15 17:44:44 +08:00
.pre-commit-config.yaml chores: rebase commits 2023-12-15 17:44:44 +08:00
gradio_app.py chores: rebase commits 2023-12-15 17:44:44 +08:00
launch.py chores: rebase commits 2023-12-15 17:44:44 +08:00
LICENSE chores: rebase commits 2023-12-15 17:44:44 +08:00
LICENSE-CODE chores: rebase commits 2023-12-15 17:44:44 +08:00
LICENSE-MODEL chores: rebase commits 2023-12-15 17:44:44 +08:00
metric_utils.py chores: rebase commits 2023-12-15 17:44:44 +08:00
preprocess_image.py chores: rebase commits 2023-12-15 17:44:44 +08:00
README.md chores: rebase commits 2023-12-15 17:44:44 +08:00
requirements.txt fix: requirements.txt to reduce vulnerabilities 2024-02-11 21:32:24 +00:00

DreamCraft3D

Paper | Project Page | Youtube video

Official implementation of DreamCraft3D: Hierarchical 3D Generation with Bootstrapped Diffusion Prior

Jingxiang Sun, Bo Zhang, Ruizhi Shao, Lizhen Wang, Wen Liu, Zhenda Xie, Yebin Liu

Abstract: We present DreamCraft3D, a hierarchical 3D content generation method that produces high-fidelity and coherent 3D objects. We tackle the problem by leveraging a 2D reference image to guide the stages of geometry sculpting and texture boosting. A central focus of this work is to address the consistency issue that existing works encounter. To sculpt geometries that render coherently, we perform score distillation sampling via a view-dependent diffusion model. This 3D prior, alongside several training strategies, prioritizes the geometry consistency but compromises the texture fidelity. We further propose Bootstrapped Score Distillation to specifically boost the texture. We train a personalized diffusion model, Dreambooth, on the augmented renderings of the scene, imbuing it with 3D knowledge of the scene being optimized. The score distillation from this 3D-aware diffusion prior provides view-consistent guidance for the scene. Notably, through an alternating optimization of the diffusion prior and 3D scene representation, we achieve mutually reinforcing improvements: the optimized 3D scene aids in training the scene-specific diffusion model, which offers increasingly view-consistent guidance for 3D optimization. The optimization is thus bootstrapped and leads to substantial texture boosting. With tailored 3D priors throughout the hierarchical generation, DreamCraft3D generates coherent 3D objects with photorealistic renderings, advancing the state-of-the-art in 3D content generation.

Method Overview

Installation

Install threestudio

This part is the same as original threestudio. Skip it if you already have installed the environment.

See installation.md for additional information, including installation via Docker.

  • You must have an NVIDIA graphics card with at least 20GB VRAM and have CUDA installed.
  • Install Python >= 3.8.
  • (Optional, Recommended) Create a virtual environment:
python3 -m virtualenv venv
. venv/bin/activate

# Newer pip versions, e.g. pip-23.x, can be much faster than old versions, e.g. pip-20.x.
# For instance, it caches the wheels of git packages to avoid unnecessarily rebuilding them later.
python3 -m pip install --upgrade pip
  • Install PyTorch >= 1.12. We have tested on torch1.12.1+cu113 and torch2.0.0+cu118, but other versions should also work fine.
# torch1.12.1+cu113
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113
# or torch2.0.0+cu118
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
  • (Optional, Recommended) Install ninja to speed up the compilation of CUDA extensions:
pip install ninja
  • Install dependencies:
pip install -r requirements.txt

Quickstart

Our model is trained in multiple stages. You can run it by

prompt="a brightly colored mushroom growing on a log"
image_path="load/images/mushroom_log_rgba.png"

# --------- Stage 1 (NeRF & NeuS) --------- # 
python launch.py --config configs/dreamcraft3d-coarse-nerf.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path"

ckpt=outputs/dreamcraft3d-coarse-nerf/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-coarse-neus.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.weights="$ckpt"

# --------- Stage 2 (Geometry Refinement) --------- # 
ckpt=outputs/dreamcraft3d-coarse-neus/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-geometry.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.geometry_convert_from="$ckpt"


# --------- Stage 3 (Texture Refinement) --------- # 
ckpt=outputs/dreamcraft3d-geometry/$prompt@LAST/ckpts/last.ckpt
python launch.py --config configs/dreamcraft3d-texture.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.geometry_convert_from="$ckpt"
[Optional] If the "Janus problem" arises in Stage 1, consider training a custom Text2Image model.

First, generate multi-view images from a single reference image by Zero123++.

python threestudio/scripts/img_to_mv.py --image_path 'load/mushroom.png' --save_path '.cache/temp' --prompt 'a photo of mushroom' --superres

Train a personalized DeepFloyd model by DreamBooth Lora. Please check if the generated mv images above are reasonable.

export MODEL_NAME="DeepFloyd/IF-I-XL-v1.0"
export INSTANCE_DIR=".cache/temp"
export OUTPUT_DIR=".cache/if_dreambooth_mushroom"

accelerate launch threestudio/scripts/train_dreambooth_lora.py \
  --pretrained_model_name_or_path=$MODEL_NAME  \
  --instance_data_dir=$INSTANCE_DIR \
  --output_dir=$OUTPUT_DIR \
  --instance_prompt="a sks mushroom" \
  --resolution=64 \
  --train_batch_size=4 \
  --gradient_accumulation_steps=1 \
  --learning_rate=5e-6 \
  --scale_lr \
  --max_train_steps=1200 \
  --checkpointing_steps=600 \
  --pre_compute_text_embeddings \
  --tokenizer_max_length=77 \
  --text_encoder_use_attention_mask

The personalized DeepFloyd model lora is save at .cache/if_dreambooth_mushroom. Now you can replace the guidance the training scripts by

# --------- Stage 1 (NeRF & NeuS) --------- # 
python launch.py --config configs/dreamcraft3d-coarse-nerf.yaml --train system.prompt_processor.prompt="$prompt" data.image_path="$image_path" system.guidance.lora_weights_path=".cache/if_dreambooth_mushroom"

Tips

  • Memory Usage. We run the default configs on 40G A100 GPUs. For reducing memory usage, you can reduce the rendering resolution of NeuS by data.height=128 data.width=128 data.random_camera.height=128 data.random_camera.width=128. You can also reduce resolution for other stages in the same way.

Todo

  • Release the reorganized code.
  • Clean the original dreambooth training code.
  • Provide some running results and checkpoints.

Credits

This code is built on the amazing open-source threestudio-project.

BibTeX

@article{sun2023dreamcraft3d,
  title={Dreamcraft3d: Hierarchical 3d generation with bootstrapped diffusion prior},
  author={Sun, Jingxiang and Zhang, Bo and Shao, Ruizhi and Wang, Lizhen and Liu, Wen and Xie, Zhenda and Liu, Yebin},
  journal={arXiv preprint arXiv:2310.16818},
  year={2023}
}