mirror of
https://github.com/deepseek-ai/DreamCraft3D
synced 2024-12-05 02:25:45 +00:00
252 lines
8.3 KiB
Python
252 lines
8.3 KiB
Python
import argparse
|
|
import contextlib
|
|
import importlib
|
|
import logging
|
|
import os
|
|
import sys
|
|
|
|
|
|
class ColoredFilter(logging.Filter):
|
|
"""
|
|
A logging filter to add color to certain log levels.
|
|
"""
|
|
|
|
RESET = "\033[0m"
|
|
RED = "\033[31m"
|
|
GREEN = "\033[32m"
|
|
YELLOW = "\033[33m"
|
|
BLUE = "\033[34m"
|
|
MAGENTA = "\033[35m"
|
|
CYAN = "\033[36m"
|
|
|
|
COLORS = {
|
|
"WARNING": YELLOW,
|
|
"INFO": GREEN,
|
|
"DEBUG": BLUE,
|
|
"CRITICAL": MAGENTA,
|
|
"ERROR": RED,
|
|
}
|
|
|
|
RESET = "\x1b[0m"
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def filter(self, record):
|
|
if record.levelname in self.COLORS:
|
|
color_start = self.COLORS[record.levelname]
|
|
record.levelname = f"{color_start}[{record.levelname}]"
|
|
record.msg = f"{record.msg}{self.RESET}"
|
|
return True
|
|
|
|
|
|
def main(args, extras) -> None:
|
|
# set CUDA_VISIBLE_DEVICES if needed, then import pytorch-lightning
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
env_gpus_str = os.environ.get("CUDA_VISIBLE_DEVICES", None)
|
|
env_gpus = list(env_gpus_str.split(",")) if env_gpus_str else []
|
|
selected_gpus = [0]
|
|
|
|
# Always rely on CUDA_VISIBLE_DEVICES if specific GPU ID(s) are specified.
|
|
# As far as Pytorch Lightning is concerned, we always use all available GPUs
|
|
# (possibly filtered by CUDA_VISIBLE_DEVICES).
|
|
devices = -1
|
|
if len(env_gpus) > 0:
|
|
# CUDA_VISIBLE_DEVICES was set already, e.g. within SLURM srun or higher-level script.
|
|
n_gpus = len(env_gpus)
|
|
else:
|
|
selected_gpus = list(args.gpu.split(","))
|
|
n_gpus = len(selected_gpus)
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
|
|
|
|
import pytorch_lightning as pl
|
|
import torch
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
|
|
from pytorch_lightning.loggers import CSVLogger, TensorBoardLogger
|
|
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
|
|
|
if args.typecheck:
|
|
from jaxtyping import install_import_hook
|
|
|
|
install_import_hook("threestudio", "typeguard.typechecked")
|
|
|
|
import threestudio
|
|
from threestudio.systems.base import BaseSystem
|
|
from threestudio.utils.callbacks import (
|
|
CodeSnapshotCallback,
|
|
ConfigSnapshotCallback,
|
|
CustomProgressBar,
|
|
ProgressCallback,
|
|
)
|
|
from threestudio.utils.config import ExperimentConfig, load_config
|
|
from threestudio.utils.misc import get_rank
|
|
from threestudio.utils.typing import Optional
|
|
|
|
logger = logging.getLogger("pytorch_lightning")
|
|
if args.verbose:
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
for handler in logger.handlers:
|
|
if handler.stream == sys.stderr: # type: ignore
|
|
if not args.gradio:
|
|
handler.setFormatter(logging.Formatter("%(levelname)s %(message)s"))
|
|
handler.addFilter(ColoredFilter())
|
|
else:
|
|
handler.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
|
|
|
|
# parse YAML config to OmegaConf
|
|
cfg: ExperimentConfig
|
|
cfg = load_config(args.config, cli_args=extras, n_gpus=n_gpus)
|
|
|
|
if len(cfg.custom_import) > 0:
|
|
print(cfg.custom_import)
|
|
for extension in cfg.custom_import:
|
|
importlib.import_module(extension)
|
|
# set a different seed for each device
|
|
pl.seed_everything(cfg.seed + get_rank(), workers=True)
|
|
|
|
dm = threestudio.find(cfg.data_type)(cfg.data)
|
|
|
|
# Auto check resume files during training
|
|
if args.train and cfg.resume is None:
|
|
import glob
|
|
resume_file_list = glob.glob(f"{cfg.trial_dir}/ckpts/*")
|
|
if len(resume_file_list) != 0:
|
|
print(sorted(resume_file_list))
|
|
cfg.resume = sorted(resume_file_list)[-1]
|
|
print(f"Find resume file: {cfg.resume}")
|
|
|
|
system: BaseSystem = threestudio.find(cfg.system_type)(
|
|
cfg.system, resumed=cfg.resume is not None
|
|
)
|
|
system.set_save_dir(os.path.join(cfg.trial_dir, "save"))
|
|
|
|
if args.gradio:
|
|
fh = logging.FileHandler(os.path.join(cfg.trial_dir, "logs"))
|
|
fh.setLevel(logging.INFO)
|
|
if args.verbose:
|
|
fh.setLevel(logging.DEBUG)
|
|
fh.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
|
|
logger.addHandler(fh)
|
|
|
|
callbacks = []
|
|
if args.train:
|
|
callbacks += [
|
|
ModelCheckpoint(
|
|
dirpath=os.path.join(cfg.trial_dir, "ckpts"), **cfg.checkpoint
|
|
),
|
|
LearningRateMonitor(logging_interval="step"),
|
|
CodeSnapshotCallback(
|
|
os.path.join(cfg.trial_dir, "code"), use_version=False
|
|
),
|
|
ConfigSnapshotCallback(
|
|
args.config,
|
|
cfg,
|
|
os.path.join(cfg.trial_dir, "configs"),
|
|
use_version=False,
|
|
),
|
|
]
|
|
if args.gradio:
|
|
callbacks += [
|
|
ProgressCallback(save_path=os.path.join(cfg.trial_dir, "progress"))
|
|
]
|
|
else:
|
|
callbacks += [CustomProgressBar(refresh_rate=1)]
|
|
|
|
def write_to_text(file, lines):
|
|
with open(file, "w") as f:
|
|
for line in lines:
|
|
f.write(line + "\n")
|
|
|
|
loggers = []
|
|
if args.train:
|
|
# make tensorboard logging dir to suppress warning
|
|
rank_zero_only(
|
|
lambda: os.makedirs(os.path.join(cfg.trial_dir, "tb_logs"), exist_ok=True)
|
|
)()
|
|
loggers += [
|
|
TensorBoardLogger(cfg.trial_dir, name="tb_logs"),
|
|
CSVLogger(cfg.trial_dir, name="csv_logs"),
|
|
] + system.get_loggers()
|
|
rank_zero_only(
|
|
lambda: write_to_text(
|
|
os.path.join(cfg.trial_dir, "cmd.txt"),
|
|
["python " + " ".join(sys.argv), str(args)],
|
|
)
|
|
)()
|
|
|
|
trainer = Trainer(
|
|
callbacks=callbacks,
|
|
logger=loggers,
|
|
inference_mode=False,
|
|
accelerator="gpu",
|
|
devices=devices,
|
|
**cfg.trainer,
|
|
)
|
|
|
|
def set_system_status(system: BaseSystem, ckpt_path: Optional[str]):
|
|
if ckpt_path is None:
|
|
return
|
|
ckpt = torch.load(ckpt_path, map_location="cpu")
|
|
system.set_resume_status(ckpt["epoch"], ckpt["global_step"])
|
|
|
|
if args.train:
|
|
trainer.fit(system, datamodule=dm, ckpt_path=cfg.resume)
|
|
trainer.test(system, datamodule=dm)
|
|
if args.gradio:
|
|
# also export assets if in gradio mode
|
|
trainer.predict(system, datamodule=dm)
|
|
elif args.validate:
|
|
# manually set epoch and global_step as they cannot be automatically resumed
|
|
set_system_status(system, cfg.resume)
|
|
trainer.validate(system, datamodule=dm, ckpt_path=cfg.resume)
|
|
elif args.test:
|
|
# manually set epoch and global_step as they cannot be automatically resumed
|
|
set_system_status(system, cfg.resume)
|
|
trainer.test(system, datamodule=dm, ckpt_path=cfg.resume)
|
|
elif args.export:
|
|
set_system_status(system, cfg.resume)
|
|
trainer.predict(system, datamodule=dm, ckpt_path=cfg.resume)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--config", required=True, help="path to config file")
|
|
parser.add_argument(
|
|
"--gpu",
|
|
default="0",
|
|
help="GPU(s) to be used. 0 means use the 1st available GPU. "
|
|
"1,2 means use the 2nd and 3rd available GPU. "
|
|
"If CUDA_VISIBLE_DEVICES is set before calling `launch.py`, "
|
|
"this argument is ignored and all available GPUs are always used.",
|
|
)
|
|
|
|
group = parser.add_mutually_exclusive_group(required=True)
|
|
group.add_argument("--train", action="store_true")
|
|
group.add_argument("--validate", action="store_true")
|
|
group.add_argument("--test", action="store_true")
|
|
group.add_argument("--export", action="store_true")
|
|
|
|
parser.add_argument(
|
|
"--gradio", action="store_true", help="if true, run in gradio mode"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--verbose", action="store_true", help="if true, set logging level to DEBUG"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--typecheck",
|
|
action="store_true",
|
|
help="whether to enable dynamic type checking",
|
|
)
|
|
|
|
args, extras = parser.parse_known_args()
|
|
|
|
if args.gradio:
|
|
# FIXME: no effect, stdout is not captured
|
|
with contextlib.redirect_stdout(sys.stderr):
|
|
main(args, extras)
|
|
else:
|
|
main(args, extras) |