DreamCraft3D/threestudio/data/image.py
2023-12-15 17:44:44 +08:00

351 lines
13 KiB
Python

import bisect
import math
import os
from dataclasses import dataclass, field
import cv2
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset, IterableDataset
import threestudio
from threestudio import register
from threestudio.data.uncond import (
RandomCameraDataModuleConfig,
RandomCameraDataset,
RandomCameraIterableDataset,
)
from threestudio.utils.base import Updateable
from threestudio.utils.config import parse_structured
from threestudio.utils.misc import get_rank
from threestudio.utils.ops import (
get_mvp_matrix,
get_projection_matrix,
get_ray_directions,
get_rays,
)
from threestudio.utils.typing import *
@dataclass
class SingleImageDataModuleConfig:
# height and width should be Union[int, List[int]]
# but OmegaConf does not support Union of containers
height: Any = 96
width: Any = 96
resolution_milestones: List[int] = field(default_factory=lambda: [])
default_elevation_deg: float = 0.0
default_azimuth_deg: float = -180.0
default_camera_distance: float = 1.2
default_fovy_deg: float = 60.0
image_path: str = ""
use_random_camera: bool = True
random_camera: dict = field(default_factory=dict)
rays_noise_scale: float = 2e-3
batch_size: int = 1
requires_depth: bool = False
requires_normal: bool = False
rays_d_normalize: bool = True
use_mixed_camera_config: bool = False
class SingleImageDataBase:
def setup(self, cfg, split):
self.split = split
self.rank = get_rank()
self.cfg: SingleImageDataModuleConfig = cfg
if self.cfg.use_random_camera:
random_camera_cfg = parse_structured(
RandomCameraDataModuleConfig, self.cfg.get("random_camera", {})
)
# FIXME:
if self.cfg.use_mixed_camera_config:
if self.rank % 2 == 0:
random_camera_cfg.camera_distance_range=[self.cfg.default_camera_distance, self.cfg.default_camera_distance]
random_camera_cfg.fovy_range=[self.cfg.default_fovy_deg, self.cfg.default_fovy_deg]
self.fixed_camera_intrinsic = True
else:
self.fixed_camera_intrinsic = False
if split == "train":
self.random_pose_generator = RandomCameraIterableDataset(
random_camera_cfg
)
else:
self.random_pose_generator = RandomCameraDataset(
random_camera_cfg, split
)
elevation_deg = torch.FloatTensor([self.cfg.default_elevation_deg])
azimuth_deg = torch.FloatTensor([self.cfg.default_azimuth_deg])
camera_distance = torch.FloatTensor([self.cfg.default_camera_distance])
elevation = elevation_deg * math.pi / 180
azimuth = azimuth_deg * math.pi / 180
camera_position: Float[Tensor, "1 3"] = torch.stack(
[
camera_distance * torch.cos(elevation) * torch.cos(azimuth),
camera_distance * torch.cos(elevation) * torch.sin(azimuth),
camera_distance * torch.sin(elevation),
],
dim=-1,
)
center: Float[Tensor, "1 3"] = torch.zeros_like(camera_position)
up: Float[Tensor, "1 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[None]
light_position: Float[Tensor, "1 3"] = camera_position
lookat: Float[Tensor, "1 3"] = F.normalize(center - camera_position, dim=-1)
right: Float[Tensor, "1 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
up = F.normalize(torch.cross(right, lookat), dim=-1)
self.c2w: Float[Tensor, "1 3 4"] = torch.cat(
[torch.stack([right, up, -lookat], dim=-1), camera_position[:, :, None]],
dim=-1,
)
self.c2w4x4: Float[Tensor, "B 4 4"] = torch.cat(
[self.c2w, torch.zeros_like(self.c2w[:, :1])], dim=1
)
self.c2w4x4[:, 3, 3] = 1.0
self.camera_position = camera_position
self.light_position = light_position
self.elevation_deg, self.azimuth_deg = elevation_deg, azimuth_deg
self.camera_distance = camera_distance
self.fovy = torch.deg2rad(torch.FloatTensor([self.cfg.default_fovy_deg]))
self.heights: List[int] = (
[self.cfg.height] if isinstance(self.cfg.height, int) else self.cfg.height
)
self.widths: List[int] = (
[self.cfg.width] if isinstance(self.cfg.width, int) else self.cfg.width
)
assert len(self.heights) == len(self.widths)
self.resolution_milestones: List[int]
if len(self.heights) == 1 and len(self.widths) == 1:
if len(self.cfg.resolution_milestones) > 0:
threestudio.warn(
"Ignoring resolution_milestones since height and width are not changing"
)
self.resolution_milestones = [-1]
else:
assert len(self.heights) == len(self.cfg.resolution_milestones) + 1
self.resolution_milestones = [-1] + self.cfg.resolution_milestones
self.directions_unit_focals = [
get_ray_directions(H=height, W=width, focal=1.0)
for (height, width) in zip(self.heights, self.widths)
]
self.focal_lengths = [
0.5 * height / torch.tan(0.5 * self.fovy) for height in self.heights
]
self.height: int = self.heights[0]
self.width: int = self.widths[0]
self.directions_unit_focal = self.directions_unit_focals[0]
self.focal_length = self.focal_lengths[0]
self.set_rays()
self.load_images()
self.prev_height = self.height
def set_rays(self):
# get directions by dividing directions_unit_focal by focal length
directions: Float[Tensor, "1 H W 3"] = self.directions_unit_focal[None]
directions[:, :, :, :2] = directions[:, :, :, :2] / self.focal_length
rays_o, rays_d = get_rays(
directions,
self.c2w,
keepdim=True,
noise_scale=self.cfg.rays_noise_scale,
normalize=self.cfg.rays_d_normalize,
)
proj_mtx: Float[Tensor, "4 4"] = get_projection_matrix(
self.fovy, self.width / self.height, 0.01, 100.0
) # FIXME: hard-coded near and far
mvp_mtx: Float[Tensor, "4 4"] = get_mvp_matrix(self.c2w, proj_mtx)
self.rays_o, self.rays_d = rays_o, rays_d
self.mvp_mtx = mvp_mtx
def load_images(self):
# load image
assert os.path.exists(
self.cfg.image_path
), f"Could not find image {self.cfg.image_path}!"
rgba = cv2.cvtColor(
cv2.imread(self.cfg.image_path, cv2.IMREAD_UNCHANGED), cv2.COLOR_BGRA2RGBA
)
rgba = (
cv2.resize(
rgba, (self.width, self.height), interpolation=cv2.INTER_AREA
).astype(np.float32)
/ 255.0
)
rgb = rgba[..., :3]
self.rgb: Float[Tensor, "1 H W 3"] = (
torch.from_numpy(rgb).unsqueeze(0).contiguous().to(self.rank)
)
self.mask: Float[Tensor, "1 H W 1"] = (
torch.from_numpy(rgba[..., 3:] > 0.5).unsqueeze(0).to(self.rank)
)
print(
f"[INFO] single image dataset: load image {self.cfg.image_path} {self.rgb.shape}"
)
# load depth
if self.cfg.requires_depth:
depth_path = self.cfg.image_path.replace("_rgba.png", "_depth.png")
assert os.path.exists(depth_path)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
depth = cv2.resize(
depth, (self.width, self.height), interpolation=cv2.INTER_AREA
)
self.depth: Float[Tensor, "1 H W 1"] = (
torch.from_numpy(depth.astype(np.float32) / 255.0)
.unsqueeze(0)
.to(self.rank)
)
print(
f"[INFO] single image dataset: load depth {depth_path} {self.depth.shape}"
)
else:
self.depth = None
# load normal
if self.cfg.requires_normal:
normal_path = self.cfg.image_path.replace("_rgba.png", "_normal.png")
assert os.path.exists(normal_path)
normal = cv2.imread(normal_path, cv2.IMREAD_UNCHANGED)
normal = cv2.resize(
normal, (self.width, self.height), interpolation=cv2.INTER_AREA
)
self.normal: Float[Tensor, "1 H W 3"] = (
torch.from_numpy(normal.astype(np.float32) / 255.0)
.unsqueeze(0)
.to(self.rank)
)
print(
f"[INFO] single image dataset: load normal {normal_path} {self.normal.shape}"
)
else:
self.normal = None
def get_all_images(self):
return self.rgb
def update_step_(self, epoch: int, global_step: int, on_load_weights: bool = False):
size_ind = bisect.bisect_right(self.resolution_milestones, global_step) - 1
self.height = self.heights[size_ind]
if self.height == self.prev_height:
return
self.prev_height = self.height
self.width = self.widths[size_ind]
self.directions_unit_focal = self.directions_unit_focals[size_ind]
self.focal_length = self.focal_lengths[size_ind]
threestudio.debug(f"Training height: {self.height}, width: {self.width}")
self.set_rays()
self.load_images()
class SingleImageIterableDataset(IterableDataset, SingleImageDataBase, Updateable):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.setup(cfg, split)
def collate(self, batch) -> Dict[str, Any]:
batch = {
"rays_o": self.rays_o,
"rays_d": self.rays_d,
"mvp_mtx": self.mvp_mtx,
"camera_positions": self.camera_position,
"light_positions": self.light_position,
"elevation": self.elevation_deg,
"azimuth": self.azimuth_deg,
"camera_distances": self.camera_distance,
"rgb": self.rgb,
"ref_depth": self.depth,
"ref_normal": self.normal,
"mask": self.mask,
"height": self.cfg.height,
"width": self.cfg.width,
"c2w": self.c2w,
"c2w4x4": self.c2w4x4,
}
if self.cfg.use_random_camera:
batch["random_camera"] = self.random_pose_generator.collate(None)
return batch
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
self.update_step_(epoch, global_step, on_load_weights)
self.random_pose_generator.update_step(epoch, global_step, on_load_weights)
def __iter__(self):
while True:
yield {}
class SingleImageDataset(Dataset, SingleImageDataBase):
def __init__(self, cfg: Any, split: str) -> None:
super().__init__()
self.setup(cfg, split)
def __len__(self):
return len(self.random_pose_generator)
def __getitem__(self, index):
batch = self.random_pose_generator[index]
batch.update(
{
"height": self.random_pose_generator.cfg.eval_height,
"width": self.random_pose_generator.cfg.eval_width,
"mvp_mtx_ref": self.mvp_mtx[0],
"c2w_ref": self.c2w4x4,
}
)
return batch
@register("single-image-datamodule")
class SingleImageDataModule(pl.LightningDataModule):
cfg: SingleImageDataModuleConfig
def __init__(self, cfg: Optional[Union[dict, DictConfig]] = None) -> None:
super().__init__()
self.cfg = parse_structured(SingleImageDataModuleConfig, cfg)
def setup(self, stage=None) -> None:
if stage in [None, "fit"]:
self.train_dataset = SingleImageIterableDataset(self.cfg, "train")
if stage in [None, "fit", "validate"]:
self.val_dataset = SingleImageDataset(self.cfg, "val")
if stage in [None, "test", "predict"]:
self.test_dataset = SingleImageDataset(self.cfg, "test")
def prepare_data(self):
pass
def general_loader(self, dataset, batch_size, collate_fn=None) -> DataLoader:
return DataLoader(
dataset, num_workers=0, batch_size=batch_size, collate_fn=collate_fn
)
def train_dataloader(self) -> DataLoader:
return self.general_loader(
self.train_dataset,
batch_size=self.cfg.batch_size,
collate_fn=self.train_dataset.collate,
)
def val_dataloader(self) -> DataLoader:
return self.general_loader(self.val_dataset, batch_size=1)
def test_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)
def predict_dataloader(self) -> DataLoader:
return self.general_loader(self.test_dataset, batch_size=1)