DreamCraft3D/preprocess_image.py
2023-12-17 00:15:09 +08:00

229 lines
8.4 KiB
Python

import os
import sys
import cv2
import argparse
import numpy as np
import matplotlib.pyplot as plt
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
class BackgroundRemoval():
def __init__(self, device='cuda'):
from carvekit.api.high import HiInterface
self.interface = HiInterface(
object_type="object", # Can be "object" or "hairs-like".
batch_size_seg=5,
batch_size_matting=1,
device=device,
seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
matting_mask_size=2048,
trimap_prob_threshold=231,
trimap_dilation=30,
trimap_erosion_iters=5,
fp16=True,
)
@torch.no_grad()
def __call__(self, image):
# image: [H, W, 3] array in [0, 255].
image = Image.fromarray(image)
image = self.interface([image])[0]
image = np.array(image)
return image
class BLIP2():
def __init__(self, device='cuda'):
self.device = device
from transformers import AutoProcessor, Blip2ForConditionalGeneration
self.processor = AutoProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16).to(device)
@torch.no_grad()
def __call__(self, image):
image = Image.fromarray(image)
inputs = self.processor(image, return_tensors="pt").to(self.device, torch.float16)
generated_ids = self.model.generate(**inputs, max_new_tokens=20)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text
class DPT():
def __init__(self, task='depth', device='cuda'):
self.task = task
self.device = device
from threestudio.utils.dpt import DPTDepthModel
if task == 'depth':
path = 'load/omnidata/omnidata_dpt_depth_v2.ckpt'
self.model = DPTDepthModel(backbone='vitb_rn50_384')
self.aug = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.5)
])
else: # normal
path = 'load/omnidata/omnidata_dpt_normal_v2.ckpt'
self.model = DPTDepthModel(backbone='vitb_rn50_384', num_channels=3)
self.aug = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor()
])
# load model
checkpoint = torch.load(path, map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = {}
for k, v in checkpoint['state_dict'].items():
state_dict[k[6:]] = v
else:
state_dict = checkpoint
self.model.load_state_dict(state_dict)
self.model.eval().to(device)
@torch.no_grad()
def __call__(self, image):
# image: np.ndarray, uint8, [H, W, 3]
H, W = image.shape[:2]
image = Image.fromarray(image)
image = self.aug(image).unsqueeze(0).to(self.device)
if self.task == 'depth':
depth = self.model(image).clamp(0, 1)
depth = F.interpolate(depth.unsqueeze(1), size=(H, W), mode='bicubic', align_corners=False)
depth = depth.squeeze(1).cpu().numpy()
return depth
else:
normal = self.model(image).clamp(0, 1)
normal = F.interpolate(normal, size=(H, W), mode='bicubic', align_corners=False)
normal = normal.cpu().numpy()
return normal
def preprocess_single_image(img_path, args):
out_dir = os.path.dirname(img_path)
out_rgba = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_rgba.png')
out_depth = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_depth.png')
out_normal = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_normal.png')
out_caption = os.path.join(out_dir, os.path.basename(img_path).split('.')[0] + '_caption.txt')
# load image
print(f'[INFO] loading image {img_path}...')
# check the exisiting files
if os.path.isfile(out_rgba) and os.path.isfile(out_depth) and os.path.isfile(out_normal):
print(f"{img_path} has already been here!")
return
print(img_path)
image = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
carved_image = None
if image.shape[-1] == 4:
carved_image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
else:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if carved_image is None:
# carve background
print(f'[INFO] background removal...')
carved_image = BackgroundRemoval()(image) # [H, W, 4]
mask = carved_image[..., -1] > 0
# predict depth
print(f'[INFO] depth estimation...')
dpt_depth_model = DPT(task='depth')
depth = dpt_depth_model(image)[0]
depth[mask] = (depth[mask] - depth[mask].min()) / (depth[mask].max() - depth[mask].min() + 1e-9)
depth[~mask] = 0
depth = (depth * 255).astype(np.uint8)
del dpt_depth_model
# predict normal
print(f'[INFO] normal estimation...')
dpt_normal_model = DPT(task='normal')
normal = dpt_normal_model(image)[0]
normal = (normal * 255).astype(np.uint8).transpose(1, 2, 0)
normal[~mask] = 0
del dpt_normal_model
# recenter
if opt.recenter:
print(f'[INFO] recenter...')
final_rgba = np.zeros((opt.size, opt.size, 4), dtype=np.uint8)
final_depth = np.zeros((opt.size, opt.size), dtype=np.uint8)
final_normal = np.zeros((opt.size, opt.size, 3), dtype=np.uint8)
coords = np.nonzero(mask)
x_min, x_max = coords[0].min(), coords[0].max()
y_min, y_max = coords[1].min(), coords[1].max()
h = x_max - x_min
w = y_max - y_min
desired_size = int(opt.size * (1 - opt.border_ratio))
scale = desired_size / max(h, w)
h2 = int(h * scale)
w2 = int(w * scale)
x2_min = (opt.size - h2) // 2
x2_max = x2_min + h2
y2_min = (opt.size - w2) // 2
y2_max = y2_min + w2
final_rgba[x2_min:x2_max, y2_min:y2_max] = cv2.resize(carved_image[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
final_depth[x2_min:x2_max, y2_min:y2_max] = cv2.resize(depth[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
final_normal[x2_min:x2_max, y2_min:y2_max] = cv2.resize(normal[x_min:x_max, y_min:y_max], (w2, h2), interpolation=cv2.INTER_AREA)
else:
final_rgba = carved_image
final_depth = depth
final_normal = normal
# write output
cv2.imwrite(out_rgba, cv2.cvtColor(final_rgba, cv2.COLOR_RGBA2BGRA))
cv2.imwrite(out_depth, final_depth)
cv2.imwrite(out_normal, final_normal)
if opt.do_caption:
# predict caption (it's too slow... use your brain instead)
print(f'[INFO] captioning...')
blip2 = BLIP2()
caption = blip2(image)
with open(out_caption, 'w') as f:
f.write(caption)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str, help="path to image (png, jpeg, etc.)")
parser.add_argument('--size', default=1024, type=int, help="output resolution")
parser.add_argument('--border_ratio', default=0.1, type=float, help="output border ratio")
parser.add_argument('--recenter', action='store_true', help="recenter, potentially not helpful for multiview zero123")
parser.add_argument('--do_caption', action='store_true', help="do text captioning")
opt = parser.parse_args()
if os.path.isdir(opt.path):
img_list = sorted(os.path.join(root, fname) for root, _dirs, files in os.walk(opt.path) for fname in files)
img_list = [img for img in img_list if not img.endswith("rgba.png") and not img.endswith("depth.png") and not img.endswith("normal.png")]
img_list = [img for img in img_list if img.endswith(".png")]
for img in img_list:
# try:
preprocess_single_image(img, opt)
# except:
# with open("preprocess_images_invalid.txt", "a") as f:
# print(img, file=f)
else: # single image file
preprocess_single_image(opt.path, opt)