DreamCraft3D/extern/ldm_zero123/util.py
2023-12-15 17:44:44 +08:00

250 lines
7.9 KiB
Python
Executable File

import importlib
import os
import time
from inspect import isfunction
import cv2
import matplotlib.pyplot as plt
import numpy as np
import PIL
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
from torch import optim
def pil_rectangle_crop(im):
width, height = im.size # Get dimensions
if width <= height:
left = 0
right = width
top = (height - width) / 2
bottom = (height + width) / 2
else:
top = 0
bottom = height
left = (width - height) / 2
bottom = (width + height) / 2
# Crop the center of the image
im = im.crop((left, top, right, bottom))
return im
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
nc = int(40 * (wh[0] / 256))
lines = "\n".join(
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
)
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
return total_params
def instantiate_from_config(config):
if not "target" in config:
if config == "__is_first_stage__":
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
class AdamWwithEMAandWings(optim.Optimizer):
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
def __init__(
self,
params,
lr=1.0e-3,
betas=(0.9, 0.999),
eps=1.0e-8, # TODO: check hyperparameters before using
weight_decay=1.0e-2,
amsgrad=False,
ema_decay=0.9999, # ema decay to match previous code
ema_power=1.0,
param_names=(),
):
"""AdamW that saves EMA versions of the parameters."""
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
if not 0.0 <= ema_decay <= 1.0:
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
defaults = dict(
lr=lr,
betas=betas,
eps=eps,
weight_decay=weight_decay,
amsgrad=amsgrad,
ema_decay=ema_decay,
ema_power=ema_power,
param_names=param_names,
)
super().__init__(params, defaults)
def __setstate__(self, state):
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("amsgrad", False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
ema_params_with_grad = []
state_sums = []
max_exp_avg_sqs = []
state_steps = []
amsgrad = group["amsgrad"]
beta1, beta2 = group["betas"]
ema_decay = group["ema_decay"]
ema_power = group["ema_power"]
for p in group["params"]:
if p.grad is None:
continue
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError("AdamW does not support sparse gradients")
grads.append(p.grad)
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(
p, memory_format=torch.preserve_format
)
# Exponential moving average of parameter values
state["param_exp_avg"] = p.detach().float().clone()
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
ema_params_with_grad.append(state["param_exp_avg"])
if amsgrad:
max_exp_avg_sqs.append(state["max_exp_avg_sq"])
# update the steps for each param group update
state["step"] += 1
# record the step after step update
state_steps.append(state["step"])
optim._functional.adamw(
params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=amsgrad,
beta1=beta1,
beta2=beta2,
lr=group["lr"],
weight_decay=group["weight_decay"],
eps=group["eps"],
maximize=False,
)
cur_ema_decay = min(ema_decay, 1 - state["step"] ** -ema_power)
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
ema_param.mul_(cur_ema_decay).add_(
param.float(), alpha=1 - cur_ema_decay
)
return loss