import json import os from dataclasses import dataclass import torch import torch.nn as nn from diffusers import IFPipeline from transformers import T5EncoderModel, T5Tokenizer import threestudio from threestudio.models.prompt_processors.base import PromptProcessor, hash_prompt from threestudio.utils.misc import cleanup from threestudio.utils.typing import * @threestudio.register("deep-floyd-prompt-processor") class DeepFloydPromptProcessor(PromptProcessor): @dataclass class Config(PromptProcessor.Config): pretrained_model_name_or_path: str = "DeepFloyd/IF-I-XL-v1.0" cfg: Config ### these functions are unused, kept for debugging ### def configure_text_encoder(self) -> None: os.environ["TOKENIZERS_PARALLELISM"] = "false" self.text_encoder = T5EncoderModel.from_pretrained( self.cfg.pretrained_model_name_or_path, subfolder="text_encoder", load_in_8bit=True, variant="8bit", device_map="auto", ) # FIXME: behavior of auto device map in multi-GPU training self.pipe = IFPipeline.from_pretrained( self.cfg.pretrained_model_name_or_path, text_encoder=self.text_encoder, # pass the previously instantiated 8bit text encoder unet=None, ) def destroy_text_encoder(self) -> None: del self.text_encoder del self.pipe cleanup() def get_text_embeddings( self, prompt: Union[str, List[str]], negative_prompt: Union[str, List[str]] ) -> Tuple[Float[Tensor, "B 77 4096"], Float[Tensor, "B 77 4096"]]: text_embeddings, uncond_text_embeddings = self.pipe.encode_prompt( prompt=prompt, negative_prompt=negative_prompt, device=self.device ) return text_embeddings, uncond_text_embeddings ### @staticmethod def spawn_func(pretrained_model_name_or_path, prompts, cache_dir, device): max_length = 77 tokenizer = T5Tokenizer.from_pretrained( pretrained_model_name_or_path, subfolder="tokenizer", local_files_only=True ) text_encoder = T5EncoderModel.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", torch_dtype=torch.float16, # suppress warning load_in_8bit=True, variant="8bit", device_map="auto", local_files_only=True ) with torch.no_grad(): text_inputs = tokenizer( prompts, padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids attention_mask = text_inputs.attention_mask text_embeddings = text_encoder( text_input_ids.to(text_encoder.device), attention_mask=attention_mask.to(text_encoder.device), ) text_embeddings = text_embeddings[0] for prompt, embedding in zip(prompts, text_embeddings): torch.save( embedding, os.path.join( cache_dir, f"{hash_prompt(pretrained_model_name_or_path, prompt)}.pt", ), ) del text_encoder