name: "dreamcraft3d-coarse-nerf" tag: "${rmspace:${system.prompt_processor.prompt},_}" exp_root_dir: "outputs" seed: 0 data_type: "single-image-datamodule" data: image_path: ./load/images/hamburger_rgba.png height: [128, 384] width: [128, 384] resolution_milestones: [3000] default_elevation_deg: 0.0 default_azimuth_deg: 0.0 default_camera_distance: 3.8 default_fovy_deg: 20.0 requires_depth: true requires_normal: ${cmaxgt0:${system.loss.lambda_normal}} random_camera: height: [128, 384] width: [128, 384] batch_size: [1, 1] resolution_milestones: [3000] eval_height: 512 eval_width: 512 eval_batch_size: 1 elevation_range: [-10, 45] azimuth_range: [-180, 180] camera_distance_range: [3.8, 3.8] fovy_range: [20.0, 20.0] # Zero123 has fixed fovy progressive_until: 200 camera_perturb: 0.0 center_perturb: 0.0 up_perturb: 0.0 eval_elevation_deg: ${data.default_elevation_deg} eval_camera_distance: ${data.default_camera_distance} eval_fovy_deg: ${data.default_fovy_deg} batch_uniform_azimuth: false n_val_views: 40 n_test_views: 120 system_type: "dreamcraft3d-system" system: stage: coarse geometry_type: "implicit-volume" geometry: radius: 2.0 normal_type: "finite_difference" # the density initialization proposed in the DreamFusion paper # does not work very well # density_bias: "blob_dreamfusion" # density_activation: exp # density_blob_scale: 5. # density_blob_std: 0.2 # use Magic3D density initialization instead density_bias: "blob_magic3d" density_activation: softplus density_blob_scale: 10. density_blob_std: 0.5 # coarse to fine hash grid encoding # to ensure smooth analytic normals pos_encoding_config: otype: ProgressiveBandHashGrid n_levels: 16 n_features_per_level: 2 log2_hashmap_size: 19 base_resolution: 16 per_level_scale: 1.447269237440378 # max resolution 4096 start_level: 8 # resolution ~200 start_step: 2000 update_steps: 500 material_type: "no-material" material: requires_normal: true background_type: "solid-color-background" renderer_type: "nerf-volume-renderer" renderer: radius: ${system.geometry.radius} num_samples_per_ray: 512 return_normal_perturb: true return_comp_normal: ${cmaxgt0:${system.loss.lambda_normal_smooth}} prompt_processor_type: "deep-floyd-prompt-processor" prompt_processor: pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" prompt: ??? use_perp_neg: true guidance_type: "deep-floyd-guidance" guidance: pretrained_model_name_or_path: "DeepFloyd/IF-I-XL-v1.0" guidance_scale: 20 min_step_percent: [0, 0.7, 0.2, 200] max_step_percent: [0, 0.85, 0.5, 200] guidance_3d_type: "stable-zero123-guidance" guidance_3d: pretrained_model_name_or_path: "./load/zero123/stable_zero123.ckpt" pretrained_config: "./load/zero123/sd-objaverse-finetune-c_concat-256.yaml" cond_image_path: ${data.image_path} cond_elevation_deg: ${data.default_elevation_deg} cond_azimuth_deg: ${data.default_azimuth_deg} cond_camera_distance: ${data.default_camera_distance} guidance_scale: 5.0 min_step_percent: [0, 0.7, 0.2, 200] # (start_iter, start_val, end_val, end_iter) max_step_percent: [0, 0.85, 0.5, 200] freq: n_ref: 2 ref_only_steps: 0 ref_or_guidance: "alternate" no_diff_steps: 0 guidance_eval: 0 loggers: wandb: enable: false project: "threestudio" loss: lambda_sd: 0.1 lambda_3d_sd: 0.1 lambda_rgb: 1000.0 lambda_mask: 100.0 lambda_mask_binary: 0.0 lambda_depth: 0.0 lambda_depth_rel: 0.05 lambda_normal: 0.0 lambda_normal_smooth: 1.0 lambda_3d_normal_smooth: [2000, 5., 1., 2001] lambda_orient: [2000, 1., 10., 2001] lambda_sparsity: [2000, 0.1, 10., 2001] lambda_opaque: [2000, 0.1, 10., 2001] lambda_clip: 0.0 optimizer: name: Adam args: lr: 0.01 betas: [0.9, 0.99] eps: 1.e-8 trainer: max_steps: 5000 log_every_n_steps: 1 num_sanity_val_steps: 0 val_check_interval: 200 enable_progress_bar: true precision: 16-mixed checkpoint: save_last: true save_top_k: -1 every_n_train_steps: ${trainer.max_steps}