mirror of
https://github.com/deepseek-ai/DreamCraft3D
synced 2024-12-04 18:15:11 +00:00
667 lines
30 KiB
Python
667 lines
30 KiB
Python
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import inspect
|
||
|
import math
|
||
|
import warnings
|
||
|
from typing import Any, Callable, Dict, List, Optional, Union
|
||
|
|
||
|
import PIL
|
||
|
import torch
|
||
|
import torchvision.transforms.functional as TF
|
||
|
from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config
|
||
|
from diffusers.image_processor import VaeImageProcessor
|
||
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
||
|
from diffusers.models.modeling_utils import ModelMixin
|
||
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||
|
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
||
|
StableDiffusionSafetyChecker,
|
||
|
)
|
||
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
||
|
from diffusers.utils import deprecate, is_accelerate_available, logging
|
||
|
from diffusers.utils.torch_utils import randn_tensor
|
||
|
from packaging import version
|
||
|
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||
|
|
||
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
|
||
|
|
||
|
class CLIPCameraProjection(ModelMixin, ConfigMixin):
|
||
|
"""
|
||
|
A Projection layer for CLIP embedding and camera embedding.
|
||
|
|
||
|
Parameters:
|
||
|
embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed`
|
||
|
additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the
|
||
|
projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings +
|
||
|
additional_embeddings`.
|
||
|
"""
|
||
|
|
||
|
@register_to_config
|
||
|
def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4):
|
||
|
super().__init__()
|
||
|
self.embedding_dim = embedding_dim
|
||
|
self.additional_embeddings = additional_embeddings
|
||
|
|
||
|
self.input_dim = self.embedding_dim + self.additional_embeddings
|
||
|
self.output_dim = self.embedding_dim
|
||
|
|
||
|
self.proj = torch.nn.Linear(self.input_dim, self.output_dim)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
embedding: torch.FloatTensor,
|
||
|
):
|
||
|
"""
|
||
|
The [`PriorTransformer`] forward method.
|
||
|
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`):
|
||
|
The currently input embeddings.
|
||
|
|
||
|
Returns:
|
||
|
The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`).
|
||
|
"""
|
||
|
proj_embedding = self.proj(embedding)
|
||
|
return proj_embedding
|
||
|
|
||
|
|
||
|
class Zero123Pipeline(DiffusionPipeline):
|
||
|
r"""
|
||
|
Pipeline to generate variations from an input image using Stable Diffusion.
|
||
|
|
||
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
||
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
||
|
|
||
|
Args:
|
||
|
vae ([`AutoencoderKL`]):
|
||
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
||
|
image_encoder ([`CLIPVisionModelWithProjection`]):
|
||
|
Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of
|
||
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection),
|
||
|
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
||
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
||
|
scheduler ([`SchedulerMixin`]):
|
||
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
||
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
||
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
||
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
||
|
feature_extractor ([`CLIPImageProcessor`]):
|
||
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
||
|
"""
|
||
|
# TODO: feature_extractor is required to encode images (if they are in PIL format),
|
||
|
# we should give a descriptive message if the pipeline doesn't have one.
|
||
|
_optional_components = ["safety_checker"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vae: AutoencoderKL,
|
||
|
image_encoder: CLIPVisionModelWithProjection,
|
||
|
unet: UNet2DConditionModel,
|
||
|
scheduler: KarrasDiffusionSchedulers,
|
||
|
safety_checker: StableDiffusionSafetyChecker,
|
||
|
feature_extractor: CLIPImageProcessor,
|
||
|
clip_camera_projection: CLIPCameraProjection,
|
||
|
requires_safety_checker: bool = True,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
if safety_checker is None and requires_safety_checker:
|
||
|
logger.warn(
|
||
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
||
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
||
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
||
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
||
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
||
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
||
|
)
|
||
|
|
||
|
if safety_checker is not None and feature_extractor is None:
|
||
|
raise ValueError(
|
||
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
||
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
||
|
)
|
||
|
|
||
|
is_unet_version_less_0_9_0 = hasattr(
|
||
|
unet.config, "_diffusers_version"
|
||
|
) and version.parse(
|
||
|
version.parse(unet.config._diffusers_version).base_version
|
||
|
) < version.parse(
|
||
|
"0.9.0.dev0"
|
||
|
)
|
||
|
is_unet_sample_size_less_64 = (
|
||
|
hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
||
|
)
|
||
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
||
|
deprecation_message = (
|
||
|
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
|
||
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
||
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||
|
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||
|
" the `unet/config.json` file"
|
||
|
)
|
||
|
deprecate(
|
||
|
"sample_size<64", "1.0.0", deprecation_message, standard_warn=False
|
||
|
)
|
||
|
new_config = dict(unet.config)
|
||
|
new_config["sample_size"] = 64
|
||
|
unet._internal_dict = FrozenDict(new_config)
|
||
|
|
||
|
self.register_modules(
|
||
|
vae=vae,
|
||
|
image_encoder=image_encoder,
|
||
|
unet=unet,
|
||
|
scheduler=scheduler,
|
||
|
safety_checker=safety_checker,
|
||
|
feature_extractor=feature_extractor,
|
||
|
clip_camera_projection=clip_camera_projection,
|
||
|
)
|
||
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
||
|
|
||
|
def enable_sequential_cpu_offload(self, gpu_id=0):
|
||
|
r"""
|
||
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
||
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
||
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
||
|
"""
|
||
|
if is_accelerate_available():
|
||
|
from accelerate import cpu_offload
|
||
|
else:
|
||
|
raise ImportError("Please install accelerate via `pip install accelerate`")
|
||
|
|
||
|
device = torch.device(f"cuda:{gpu_id}")
|
||
|
|
||
|
for cpu_offloaded_model in [
|
||
|
self.unet,
|
||
|
self.image_encoder,
|
||
|
self.vae,
|
||
|
self.safety_checker,
|
||
|
]:
|
||
|
if cpu_offloaded_model is not None:
|
||
|
cpu_offload(cpu_offloaded_model, device)
|
||
|
|
||
|
@property
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
||
|
def _execution_device(self):
|
||
|
r"""
|
||
|
Returns the device on which the pipeline's models will be executed. After calling
|
||
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
||
|
hooks.
|
||
|
"""
|
||
|
if not hasattr(self.unet, "_hf_hook"):
|
||
|
return self.device
|
||
|
for module in self.unet.modules():
|
||
|
if (
|
||
|
hasattr(module, "_hf_hook")
|
||
|
and hasattr(module._hf_hook, "execution_device")
|
||
|
and module._hf_hook.execution_device is not None
|
||
|
):
|
||
|
return torch.device(module._hf_hook.execution_device)
|
||
|
return self.device
|
||
|
|
||
|
def _encode_image(
|
||
|
self,
|
||
|
image,
|
||
|
elevation,
|
||
|
azimuth,
|
||
|
distance,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
clip_image_embeddings=None,
|
||
|
image_camera_embeddings=None,
|
||
|
):
|
||
|
dtype = next(self.image_encoder.parameters()).dtype
|
||
|
|
||
|
if image_camera_embeddings is None:
|
||
|
if image is None:
|
||
|
assert clip_image_embeddings is not None
|
||
|
image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype)
|
||
|
else:
|
||
|
if not isinstance(image, torch.Tensor):
|
||
|
image = self.feature_extractor(
|
||
|
images=image, return_tensors="pt"
|
||
|
).pixel_values
|
||
|
|
||
|
image = image.to(device=device, dtype=dtype)
|
||
|
image_embeddings = self.image_encoder(image).image_embeds
|
||
|
image_embeddings = image_embeddings.unsqueeze(1)
|
||
|
|
||
|
bs_embed, seq_len, _ = image_embeddings.shape
|
||
|
|
||
|
if isinstance(elevation, float):
|
||
|
elevation = torch.as_tensor(
|
||
|
[elevation] * bs_embed, dtype=dtype, device=device
|
||
|
)
|
||
|
if isinstance(azimuth, float):
|
||
|
azimuth = torch.as_tensor(
|
||
|
[azimuth] * bs_embed, dtype=dtype, device=device
|
||
|
)
|
||
|
if isinstance(distance, float):
|
||
|
distance = torch.as_tensor(
|
||
|
[distance] * bs_embed, dtype=dtype, device=device
|
||
|
)
|
||
|
|
||
|
camera_embeddings = torch.stack(
|
||
|
[
|
||
|
torch.deg2rad(elevation),
|
||
|
torch.sin(torch.deg2rad(azimuth)),
|
||
|
torch.cos(torch.deg2rad(azimuth)),
|
||
|
distance,
|
||
|
],
|
||
|
dim=-1,
|
||
|
)[:, None, :]
|
||
|
|
||
|
image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1)
|
||
|
|
||
|
# project (image, camera) embeddings to the same dimension as clip embeddings
|
||
|
image_embeddings = self.clip_camera_projection(image_embeddings)
|
||
|
else:
|
||
|
image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype)
|
||
|
bs_embed, seq_len, _ = image_embeddings.shape
|
||
|
|
||
|
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
||
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1)
|
||
|
image_embeddings = image_embeddings.view(
|
||
|
bs_embed * num_images_per_prompt, seq_len, -1
|
||
|
)
|
||
|
|
||
|
if do_classifier_free_guidance:
|
||
|
negative_prompt_embeds = torch.zeros_like(image_embeddings)
|
||
|
|
||
|
# For classifier free guidance, we need to do two forward passes.
|
||
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
||
|
# to avoid doing two forward passes
|
||
|
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
|
||
|
|
||
|
return image_embeddings
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
||
|
def run_safety_checker(self, image, device, dtype):
|
||
|
if self.safety_checker is None:
|
||
|
has_nsfw_concept = None
|
||
|
else:
|
||
|
if torch.is_tensor(image):
|
||
|
feature_extractor_input = self.image_processor.postprocess(
|
||
|
image, output_type="pil"
|
||
|
)
|
||
|
else:
|
||
|
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
||
|
safety_checker_input = self.feature_extractor(
|
||
|
feature_extractor_input, return_tensors="pt"
|
||
|
).to(device)
|
||
|
image, has_nsfw_concept = self.safety_checker(
|
||
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
||
|
)
|
||
|
return image, has_nsfw_concept
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
||
|
def decode_latents(self, latents):
|
||
|
warnings.warn(
|
||
|
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
||
|
" use VaeImageProcessor instead",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
latents = 1 / self.vae.config.scaling_factor * latents
|
||
|
image = self.vae.decode(latents, return_dict=False)[0]
|
||
|
image = (image / 2 + 0.5).clamp(0, 1)
|
||
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
||
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
||
|
return image
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
||
|
def prepare_extra_step_kwargs(self, generator, eta):
|
||
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
||
|
# and should be between [0, 1]
|
||
|
|
||
|
accepts_eta = "eta" in set(
|
||
|
inspect.signature(self.scheduler.step).parameters.keys()
|
||
|
)
|
||
|
extra_step_kwargs = {}
|
||
|
if accepts_eta:
|
||
|
extra_step_kwargs["eta"] = eta
|
||
|
|
||
|
# check if the scheduler accepts generator
|
||
|
accepts_generator = "generator" in set(
|
||
|
inspect.signature(self.scheduler.step).parameters.keys()
|
||
|
)
|
||
|
if accepts_generator:
|
||
|
extra_step_kwargs["generator"] = generator
|
||
|
return extra_step_kwargs
|
||
|
|
||
|
def check_inputs(self, image, height, width, callback_steps):
|
||
|
# TODO: check image size or adjust image size to (height, width)
|
||
|
|
||
|
if height % 8 != 0 or width % 8 != 0:
|
||
|
raise ValueError(
|
||
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
||
|
)
|
||
|
|
||
|
if (callback_steps is None) or (
|
||
|
callback_steps is not None
|
||
|
and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
||
|
):
|
||
|
raise ValueError(
|
||
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||
|
f" {type(callback_steps)}."
|
||
|
)
|
||
|
|
||
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
||
|
def prepare_latents(
|
||
|
self,
|
||
|
batch_size,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
latents=None,
|
||
|
):
|
||
|
shape = (
|
||
|
batch_size,
|
||
|
num_channels_latents,
|
||
|
height // self.vae_scale_factor,
|
||
|
width // self.vae_scale_factor,
|
||
|
)
|
||
|
if isinstance(generator, list) and len(generator) != batch_size:
|
||
|
raise ValueError(
|
||
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||
|
)
|
||
|
|
||
|
if latents is None:
|
||
|
latents = randn_tensor(
|
||
|
shape, generator=generator, device=device, dtype=dtype
|
||
|
)
|
||
|
else:
|
||
|
latents = latents.to(device)
|
||
|
|
||
|
# scale the initial noise by the standard deviation required by the scheduler
|
||
|
latents = latents * self.scheduler.init_noise_sigma
|
||
|
return latents
|
||
|
|
||
|
def _get_latent_model_input(
|
||
|
self,
|
||
|
latents: torch.FloatTensor,
|
||
|
image: Optional[
|
||
|
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
|
||
|
],
|
||
|
num_images_per_prompt: int,
|
||
|
do_classifier_free_guidance: bool,
|
||
|
image_latents: Optional[torch.FloatTensor] = None,
|
||
|
):
|
||
|
if isinstance(image, PIL.Image.Image):
|
||
|
image_pt = TF.to_tensor(image).unsqueeze(0).to(latents)
|
||
|
elif isinstance(image, list):
|
||
|
image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to(
|
||
|
latents
|
||
|
)
|
||
|
elif isinstance(image, torch.Tensor):
|
||
|
image_pt = image
|
||
|
else:
|
||
|
image_pt = None
|
||
|
|
||
|
if image_pt is None:
|
||
|
assert image_latents is not None
|
||
|
image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0)
|
||
|
else:
|
||
|
image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1]
|
||
|
# FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor
|
||
|
# but zero123 was not trained this way
|
||
|
image_pt = self.vae.encode(image_pt).latent_dist.mode()
|
||
|
image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0)
|
||
|
if do_classifier_free_guidance:
|
||
|
latent_model_input = torch.cat(
|
||
|
[
|
||
|
torch.cat([latents, latents], dim=0),
|
||
|
torch.cat([torch.zeros_like(image_pt), image_pt], dim=0),
|
||
|
],
|
||
|
dim=1,
|
||
|
)
|
||
|
else:
|
||
|
latent_model_input = torch.cat([latents, image_pt], dim=1)
|
||
|
|
||
|
return latent_model_input
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def __call__(
|
||
|
self,
|
||
|
image: Optional[
|
||
|
Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor]
|
||
|
] = None,
|
||
|
elevation: Optional[Union[float, torch.FloatTensor]] = None,
|
||
|
azimuth: Optional[Union[float, torch.FloatTensor]] = None,
|
||
|
distance: Optional[Union[float, torch.FloatTensor]] = None,
|
||
|
height: Optional[int] = None,
|
||
|
width: Optional[int] = None,
|
||
|
num_inference_steps: int = 50,
|
||
|
guidance_scale: float = 3.0,
|
||
|
num_images_per_prompt: int = 1,
|
||
|
eta: float = 0.0,
|
||
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
|
latents: Optional[torch.FloatTensor] = None,
|
||
|
clip_image_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
image_camera_embeddings: Optional[torch.FloatTensor] = None,
|
||
|
image_latents: Optional[torch.FloatTensor] = None,
|
||
|
output_type: Optional[str] = "pil",
|
||
|
return_dict: bool = True,
|
||
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||
|
callback_steps: int = 1,
|
||
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
|
):
|
||
|
r"""
|
||
|
Function invoked when calling the pipeline for generation.
|
||
|
|
||
|
Args:
|
||
|
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
|
||
|
The image or images to guide the image generation. If you provide a tensor, it needs to comply with the
|
||
|
configuration of
|
||
|
[this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json)
|
||
|
`CLIPImageProcessor`
|
||
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||
|
The height in pixels of the generated image.
|
||
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
||
|
The width in pixels of the generated image.
|
||
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
||
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||
|
expense of slower inference.
|
||
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||
|
usually at the expense of lower image quality.
|
||
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||
|
The number of images to generate per prompt.
|
||
|
eta (`float`, *optional*, defaults to 0.0):
|
||
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||
|
generator (`torch.Generator`, *optional*):
|
||
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||
|
to make generation deterministic.
|
||
|
latents (`torch.FloatTensor`, *optional*):
|
||
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||
|
tensor will ge generated by sampling using the supplied random `generator`.
|
||
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
||
|
The output format of the generate image. Choose between
|
||
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||
|
return_dict (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||
|
plain tuple.
|
||
|
callback (`Callable`, *optional*):
|
||
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
||
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||
|
callback_steps (`int`, *optional*, defaults to 1):
|
||
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||
|
called at every step.
|
||
|
|
||
|
Returns:
|
||
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
||
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
||
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
||
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
||
|
(nsfw) content, according to the `safety_checker`.
|
||
|
"""
|
||
|
# 0. Default height and width to unet
|
||
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||
|
|
||
|
# 1. Check inputs. Raise error if not correct
|
||
|
# TODO: check input elevation, azimuth, and distance
|
||
|
# TODO: check image, clip_image_embeddings, image_latents
|
||
|
self.check_inputs(image, height, width, callback_steps)
|
||
|
|
||
|
# 2. Define call parameters
|
||
|
if isinstance(image, PIL.Image.Image):
|
||
|
batch_size = 1
|
||
|
elif isinstance(image, list):
|
||
|
batch_size = len(image)
|
||
|
elif isinstance(image, torch.Tensor):
|
||
|
batch_size = image.shape[0]
|
||
|
else:
|
||
|
assert image_latents is not None
|
||
|
assert (
|
||
|
clip_image_embeddings is not None or image_camera_embeddings is not None
|
||
|
)
|
||
|
batch_size = image_latents.shape[0]
|
||
|
|
||
|
device = self._execution_device
|
||
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||
|
# corresponds to doing no classifier free guidance.
|
||
|
do_classifier_free_guidance = guidance_scale > 1.0
|
||
|
|
||
|
# 3. Encode input image
|
||
|
if isinstance(image, PIL.Image.Image) or isinstance(image, list):
|
||
|
pil_image = image
|
||
|
elif isinstance(image, torch.Tensor):
|
||
|
pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
||
|
else:
|
||
|
pil_image = None
|
||
|
image_embeddings = self._encode_image(
|
||
|
pil_image,
|
||
|
elevation,
|
||
|
azimuth,
|
||
|
distance,
|
||
|
device,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
clip_image_embeddings,
|
||
|
image_camera_embeddings,
|
||
|
)
|
||
|
|
||
|
# 4. Prepare timesteps
|
||
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||
|
timesteps = self.scheduler.timesteps
|
||
|
|
||
|
# 5. Prepare latent variables
|
||
|
# num_channels_latents = self.unet.config.in_channels
|
||
|
num_channels_latents = 4 # FIXME: hard-coded
|
||
|
latents = self.prepare_latents(
|
||
|
batch_size * num_images_per_prompt,
|
||
|
num_channels_latents,
|
||
|
height,
|
||
|
width,
|
||
|
image_embeddings.dtype,
|
||
|
device,
|
||
|
generator,
|
||
|
latents,
|
||
|
)
|
||
|
|
||
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||
|
|
||
|
# 7. Denoising loop
|
||
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||
|
for i, t in enumerate(timesteps):
|
||
|
# expand the latents if we are doing classifier free guidance
|
||
|
latent_model_input = self._get_latent_model_input(
|
||
|
latents,
|
||
|
image,
|
||
|
num_images_per_prompt,
|
||
|
do_classifier_free_guidance,
|
||
|
image_latents,
|
||
|
)
|
||
|
latent_model_input = self.scheduler.scale_model_input(
|
||
|
latent_model_input, t
|
||
|
)
|
||
|
|
||
|
# predict the noise residual
|
||
|
noise_pred = self.unet(
|
||
|
latent_model_input,
|
||
|
t,
|
||
|
encoder_hidden_states=image_embeddings,
|
||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||
|
).sample
|
||
|
|
||
|
# perform guidance
|
||
|
if do_classifier_free_guidance:
|
||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
||
|
noise_pred_text - noise_pred_uncond
|
||
|
)
|
||
|
|
||
|
# compute the previous noisy sample x_t -> x_t-1
|
||
|
latents = self.scheduler.step(
|
||
|
noise_pred, t, latents, **extra_step_kwargs
|
||
|
).prev_sample
|
||
|
|
||
|
# call the callback, if provided
|
||
|
if i == len(timesteps) - 1 or (
|
||
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
||
|
):
|
||
|
progress_bar.update()
|
||
|
if callback is not None and i % callback_steps == 0:
|
||
|
callback(i, t, latents)
|
||
|
|
||
|
if not output_type == "latent":
|
||
|
image = self.vae.decode(
|
||
|
latents / self.vae.config.scaling_factor, return_dict=False
|
||
|
)[0]
|
||
|
image, has_nsfw_concept = self.run_safety_checker(
|
||
|
image, device, image_embeddings.dtype
|
||
|
)
|
||
|
else:
|
||
|
image = latents
|
||
|
has_nsfw_concept = None
|
||
|
|
||
|
if has_nsfw_concept is None:
|
||
|
do_denormalize = [True] * image.shape[0]
|
||
|
else:
|
||
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||
|
|
||
|
image = self.image_processor.postprocess(
|
||
|
image, output_type=output_type, do_denormalize=do_denormalize
|
||
|
)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (image, has_nsfw_concept)
|
||
|
|
||
|
return StableDiffusionPipelineOutput(
|
||
|
images=image, nsfw_content_detected=has_nsfw_concept
|
||
|
)
|