DeepSeek-VL2/web_demo.py
StevenLiuWen faf18023f2 update
Gradio Demo Example, Incremental Prefilling and VLMEvalKit Support
2024-12-26 22:37:57 +08:00

675 lines
21 KiB
Python
Executable File

# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding:utf-8 -*-
from argparse import ArgumentParser
import io
import sys
import base64
from PIL import Image
import gradio as gr
import torch
from deepseek_vl2.serve.app_modules.gradio_utils import (
cancel_outputing,
delete_last_conversation,
reset_state,
reset_textbox,
wrap_gen_fn,
)
from deepseek_vl2.serve.app_modules.overwrites import reload_javascript
from deepseek_vl2.serve.app_modules.presets import (
CONCURRENT_COUNT,
MAX_EVENTS,
description,
description_top,
title
)
from deepseek_vl2.serve.app_modules.utils import (
configure_logger,
is_variable_assigned,
strip_stop_words,
parse_ref_bbox,
pil_to_base64,
display_example
)
from deepseek_vl2.serve.inference import (
convert_conversation_to_prompts,
deepseek_generate,
load_model,
)
from deepseek_vl2.models.conversation import SeparatorStyle
logger = configure_logger()
MODELS = [
"DeepSeek-VL2-tiny",
"DeepSeek-VL2-small",
"DeepSeek-VL2",
"deepseek-ai/deepseek-vl2-tiny",
"deepseek-ai/deepseek-vl2-small",
"deepseek-ai/deepseek-vl2",
]
DEPLOY_MODELS = dict()
IMAGE_TOKEN = "<image>"
examples_list = [
# visual grounding - 1
[
["images/visual_grounding_1.jpeg"],
"<|ref|>The giraffe at the back.<|/ref|>",
],
# visual grounding - 2
[
["images/visual_grounding_2.jpg"],
"找到<|ref|>淡定姐<|/ref|>",
],
# visual grounding - 3
[
["images/visual_grounding_3.png"],
"Find all the <|ref|>Watermelon slices<|/ref|>",
],
# grounding conversation
[
["images/grounding_conversation_1.jpeg"],
"<|grounding|>I want to throw out the trash now, what should I do?",
],
# in-context visual grounding
[
[
"images/incontext_visual_grounding_1.jpeg",
"images/icl_vg_2.jpeg"
],
"<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image."
],
# vqa
[
["images/vqa_1.jpg"],
"Describe each stage of this image in detail",
],
# multi-images
[
[
"images/multi_image_1.jpeg",
"images/mi_2.jpeg",
"images/mi_3.jpeg"
],
"能帮我用这几个食材做一道菜吗?",
]
]
def fetch_model(model_name: str, dtype=torch.bfloat16):
global args, DEPLOY_MODELS
if args.local_path:
model_path = args.local_path
else:
model_path = model_name
if model_name in DEPLOY_MODELS:
model_info = DEPLOY_MODELS[model_name]
print(f"{model_name} has been loaded.")
else:
print(f"{model_name} is loading...")
DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype)
print(f"Load {model_name} successfully...")
model_info = DEPLOY_MODELS[model_name]
return model_info
def generate_prompt_with_history(
text, images, history, vl_chat_processor, tokenizer, max_length=2048
):
"""
Generate a prompt with history for the deepseek application.
Args:
text (str): The text prompt.
images (list[PIL.Image.Image]): The image prompt.
history (list): List of previous conversation messages.
tokenizer: The tokenizer used for encoding the prompt.
max_length (int): The maximum length of the prompt.
Returns:
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
"""
global IMAGE_TOKEN
sft_format = "deepseek"
user_role_ind = 0
bot_role_ind = 1
# Initialize conversation
conversation = vl_chat_processor.new_chat_template()
if history:
conversation.messages = history
if images is not None and len(images) > 0:
num_image_tags = text.count(IMAGE_TOKEN)
num_images = len(images)
if num_images > num_image_tags:
pad_image_tags = num_images - num_image_tags
image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags)
# append the <image> in a new line after the text prompt
text = image_tokens + "\n" + text
elif num_images < num_image_tags:
remove_image_tags = num_image_tags - num_images
text = text.replace(IMAGE_TOKEN, "", remove_image_tags)
# print(f"prompt = {text}, len(images) = {len(images)}")
text = (text, images)
conversation.append_message(conversation.roles[user_role_ind], text)
conversation.append_message(conversation.roles[bot_role_ind], "")
# Create a copy of the conversation to avoid history truncation in the UI
conversation_copy = conversation.copy()
logger.info("=" * 80)
logger.info(get_prompt(conversation))
rounds = len(conversation.messages) // 2
for _ in range(rounds):
current_prompt = get_prompt(conversation)
current_prompt = (
current_prompt.replace("</s>", "")
if sft_format == "deepseek"
else current_prompt
)
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
return conversation_copy
if len(conversation.messages) % 2 != 0:
gr.Error("The messages between user and assistant are not paired.")
return
try:
for _ in range(2): # pop out two messages in a row
conversation.messages.pop(0)
except IndexError:
gr.Error("Input text processing failed, unable to respond in this round.")
return None
gr.Error("Prompt could not be generated within max_length limit.")
return None
def to_gradio_chatbot(conv):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(conv.messages[conv.offset:]):
if i % 2 == 0:
if type(msg) is tuple:
msg, images = msg
if isinstance(images, list):
for j, image in enumerate(images):
if isinstance(image, str):
with open(image, "rb") as f:
data = f.read()
img_b64_str = base64.b64encode(data).decode()
image_str = (f'<img src="data:image/png;base64,{img_b64_str}" '
f'alt="user upload image" style="max-width: 300px; height: auto;" />')
else:
image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400)
# replace the <image> tag in the message
msg = msg.replace(IMAGE_TOKEN, image_str, 1)
else:
pass
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_gradio_history(conv):
"""Convert the conversation to gradio history state."""
return conv.messages[conv.offset:]
def get_prompt(conv) -> str:
"""Get the prompt for generation."""
system_prompt = conv.system_template.format(system_message=conv.system_message)
if conv.sep_style == SeparatorStyle.DeepSeek:
seps = [conv.sep, conv.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(conv.messages):
if message:
if type(message) is tuple: # multimodal message
message, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
return conv.get_prompt()
def transfer_input(input_text, input_images):
print("transferring input text and input image")
return (
input_text,
input_images,
gr.update(value=""),
gr.update(value=None),
gr.Button(visible=True)
)
@wrap_gen_fn
def predict(
text,
images,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
"""
Function to predict the response based on the user's input and selected model.
Parameters:
user_text (str): The input text from the user.
user_image (str): The input image from the user.
chatbot (str): The chatbot's name.
history (str): The history of the chat.
top_p (float): The top-p parameter for the model.
temperature (float): The temperature parameter for the model.
max_length_tokens (int): The maximum length of tokens for the model.
max_context_length_tokens (int): The maximum length of context tokens for the model.
model_select_dropdown (str): The selected model from the dropdown.
Returns:
generator: A generator that yields the chatbot outputs, history, and status.
"""
print("running the prediction function")
try:
tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown)
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
if images is None:
images = []
# load images
pil_images = []
for img_or_file in images:
try:
# load as pil image
if isinstance(images, Image.Image):
pil_images.append(img_or_file)
else:
image = Image.open(img_or_file.name).convert("RGB")
pil_images.append(image)
except Exception as e:
print(f"Error loading image: {e}")
conversation = generate_prompt_with_history(
text,
pil_images,
history,
vl_chat_processor,
tokenizer,
max_length=max_context_length_tokens,
)
all_conv, last_image = convert_conversation_to_prompts(conversation)
stop_words = conversation.stop_str
gradio_chatbot_output = to_gradio_chatbot(conversation)
full_response = ""
with torch.no_grad():
for x in deepseek_generate(
conversations=all_conv,
vl_gpt=vl_gpt,
vl_chat_processor=vl_chat_processor,
tokenizer=tokenizer,
stop_words=stop_words,
max_length=max_length_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_p=top_p,
chunk_size=args.chunk_size
):
full_response += x
response = strip_stop_words(full_response, stop_words)
conversation.update_last_message(response)
gradio_chatbot_output[-1][1] = response
# sys.stdout.write(x)
# sys.stdout.flush()
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
if last_image is not None:
# TODO always render the last image's visual grounding image
vg_image = parse_ref_bbox(response, last_image)
if vg_image is not None:
vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400)
gradio_chatbot_output[-1][1] += vg_base64
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
print("flushed result to gradio")
torch.cuda.empty_cache()
if is_variable_assigned("x"):
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
print(
f"temperature: {temperature}, "
f"top_p: {top_p}, "
f"repetition_penalty: {repetition_penalty}, "
f"max_length_tokens: {max_length_tokens}"
)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
# @wrap_gen_fn
def retry(
text,
images,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
if len(history) == 0:
yield (chatbot, history, "Empty context")
return
chatbot.pop()
history.pop()
text = history.pop()[-1]
if type(text) is tuple:
text, image = text
yield from predict(
text,
images,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
args.chunk_size
)
def preview_images(files):
if files is None:
return []
image_paths = []
for file in files:
# 使用 file.name 获取文件路径
# image = Image.open(file.name)
image_paths.append(file.name)
return image_paths # 返回所有图片路径,用于预览
def build_demo(args):
# fetch model
if not args.lazy_load:
fetch_model(args.model_name)
with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
history = gr.State([])
input_text = gr.State()
input_images = gr.State()
with gr.Row():
gr.HTML(title)
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(description_top)
with gr.Row(equal_height=True):
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(
elem_id="deepseek_chatbot",
show_share_button=True,
bubble_full_width=False,
height=600,
)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(
show_label=False, placeholder="Enter text", container=False
)
with gr.Column(
min_width=70,
):
submitBtn = gr.Button("Send")
with gr.Column(
min_width=70,
):
cancelBtn = gr.Button("Stop")
with gr.Row():
emptyBtn = gr.Button(
"🧹 New Conversation",
)
retryBtn = gr.Button("🔄 Regenerate")
delLastBtn = gr.Button("🗑️ Remove Last Turn")
with gr.Column():
upload_images = gr.Files(file_types=["image"], show_label=True)
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
with gr.Tab(label="Parameter Setting") as parameter_row:
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.9,
step=0.05,
interactive=True,
label="Top-p",
)
temperature = gr.Slider(
minimum=0,
maximum=1.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
interactive=True,
label="Repetition penalty",
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=8,
interactive=True,
label="Max Generation Tokens",
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=8192,
value=4096,
step=128,
interactive=True,
label="Max History Tokens",
)
model_select_dropdown = gr.Dropdown(
label="Select Models",
choices=[args.model_name],
multiselect=False,
value=args.model_name,
interactive=True,
)
# show images, but not visible
show_images = gr.HTML(visible=False)
# show_images = gr.Image(type="pil", interactive=False, visible=False)
def format_examples(examples_list):
examples = []
for images, texts in examples_list:
examples.append([images, display_example(images), texts])
return examples
gr.Examples(
examples=format_examples(examples_list),
inputs=[upload_images, show_images, text_box],
)
gr.Markdown(description)
input_widgets = [
input_text,
input_images,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
]
output_widgets = [chatbot, history, status_display]
transfer_input_args = dict(
fn=transfer_input,
inputs=[text_box, upload_images],
outputs=[input_text, input_images, text_box, upload_images, submitBtn],
show_progress=True,
)
predict_args = dict(
fn=predict,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
retry_args = dict(
fn=retry,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
)
predict_events = [
text_box.submit(**transfer_input_args).then(**predict_args),
submitBtn.click(**transfer_input_args).then(**predict_args),
]
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
emptyBtn.click(**reset_args)
retryBtn.click(**retry_args)
delLastBtn.click(
delete_last_conversation,
[chatbot, history],
output_widgets,
show_progress=True,
)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
return demo
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model_name", type=str, required=True, choices=MODELS, help="model name")
parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional")
parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address")
parser.add_argument("--port", type=int, default=37913, help="port number")
parser.add_argument("--root_path", type=str, default="", help="root path")
parser.add_argument("--lazy_load", action='store_true')
parser.add_argument("--chunk_size", type=int, default=-1,
help="chunk size for the model for prefiiling. "
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
"Otherwise, default value is -1, which means we do not use incremental_prefilling.")
args = parser.parse_args()
demo = build_demo(args)
demo.title = "DeepSeek-VL2 Chatbot"
reload_javascript()
demo.queue(concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS).launch(
# share=False,
share=True,
favicon_path="deepseek_vl2/serve/assets/favicon.ico",
inbrowser=False,
server_name=args.ip,
server_port=args.port,
root_path=args.root_path
)