mirror of
https://github.com/deepseek-ai/DeepSeek-VL2
synced 2025-01-22 04:15:30 +00:00
faf18023f2
Gradio Demo Example, Incremental Prefilling and VLMEvalKit Support
675 lines
21 KiB
Python
Executable File
675 lines
21 KiB
Python
Executable File
# Copyright (c) 2023-2024 DeepSeek.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
# this software and associated documentation files (the "Software"), to deal in
|
|
# the Software without restriction, including without limitation the rights to
|
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
# subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
# -*- coding:utf-8 -*-
|
|
from argparse import ArgumentParser
|
|
|
|
import io
|
|
import sys
|
|
import base64
|
|
from PIL import Image
|
|
|
|
import gradio as gr
|
|
import torch
|
|
|
|
from deepseek_vl2.serve.app_modules.gradio_utils import (
|
|
cancel_outputing,
|
|
delete_last_conversation,
|
|
reset_state,
|
|
reset_textbox,
|
|
wrap_gen_fn,
|
|
)
|
|
from deepseek_vl2.serve.app_modules.overwrites import reload_javascript
|
|
from deepseek_vl2.serve.app_modules.presets import (
|
|
CONCURRENT_COUNT,
|
|
MAX_EVENTS,
|
|
description,
|
|
description_top,
|
|
title
|
|
)
|
|
from deepseek_vl2.serve.app_modules.utils import (
|
|
configure_logger,
|
|
is_variable_assigned,
|
|
strip_stop_words,
|
|
parse_ref_bbox,
|
|
pil_to_base64,
|
|
display_example
|
|
)
|
|
|
|
from deepseek_vl2.serve.inference import (
|
|
convert_conversation_to_prompts,
|
|
deepseek_generate,
|
|
load_model,
|
|
)
|
|
from deepseek_vl2.models.conversation import SeparatorStyle
|
|
|
|
logger = configure_logger()
|
|
|
|
MODELS = [
|
|
"DeepSeek-VL2-tiny",
|
|
"DeepSeek-VL2-small",
|
|
"DeepSeek-VL2",
|
|
|
|
"deepseek-ai/deepseek-vl2-tiny",
|
|
"deepseek-ai/deepseek-vl2-small",
|
|
"deepseek-ai/deepseek-vl2",
|
|
]
|
|
|
|
DEPLOY_MODELS = dict()
|
|
IMAGE_TOKEN = "<image>"
|
|
|
|
examples_list = [
|
|
# visual grounding - 1
|
|
[
|
|
["images/visual_grounding_1.jpeg"],
|
|
"<|ref|>The giraffe at the back.<|/ref|>",
|
|
],
|
|
|
|
# visual grounding - 2
|
|
[
|
|
["images/visual_grounding_2.jpg"],
|
|
"找到<|ref|>淡定姐<|/ref|>",
|
|
],
|
|
|
|
# visual grounding - 3
|
|
[
|
|
["images/visual_grounding_3.png"],
|
|
"Find all the <|ref|>Watermelon slices<|/ref|>",
|
|
],
|
|
|
|
# grounding conversation
|
|
[
|
|
["images/grounding_conversation_1.jpeg"],
|
|
"<|grounding|>I want to throw out the trash now, what should I do?",
|
|
],
|
|
|
|
# in-context visual grounding
|
|
[
|
|
[
|
|
"images/incontext_visual_grounding_1.jpeg",
|
|
"images/icl_vg_2.jpeg"
|
|
],
|
|
"<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image."
|
|
],
|
|
|
|
# vqa
|
|
[
|
|
["images/vqa_1.jpg"],
|
|
"Describe each stage of this image in detail",
|
|
],
|
|
|
|
# multi-images
|
|
[
|
|
[
|
|
"images/multi_image_1.jpeg",
|
|
"images/mi_2.jpeg",
|
|
"images/mi_3.jpeg"
|
|
],
|
|
"能帮我用这几个食材做一道菜吗?",
|
|
]
|
|
|
|
]
|
|
|
|
|
|
def fetch_model(model_name: str, dtype=torch.bfloat16):
|
|
global args, DEPLOY_MODELS
|
|
|
|
if args.local_path:
|
|
model_path = args.local_path
|
|
else:
|
|
model_path = model_name
|
|
|
|
if model_name in DEPLOY_MODELS:
|
|
model_info = DEPLOY_MODELS[model_name]
|
|
print(f"{model_name} has been loaded.")
|
|
else:
|
|
print(f"{model_name} is loading...")
|
|
DEPLOY_MODELS[model_name] = load_model(model_path, dtype=dtype)
|
|
print(f"Load {model_name} successfully...")
|
|
model_info = DEPLOY_MODELS[model_name]
|
|
|
|
return model_info
|
|
|
|
|
|
def generate_prompt_with_history(
|
|
text, images, history, vl_chat_processor, tokenizer, max_length=2048
|
|
):
|
|
"""
|
|
Generate a prompt with history for the deepseek application.
|
|
|
|
Args:
|
|
text (str): The text prompt.
|
|
images (list[PIL.Image.Image]): The image prompt.
|
|
history (list): List of previous conversation messages.
|
|
tokenizer: The tokenizer used for encoding the prompt.
|
|
max_length (int): The maximum length of the prompt.
|
|
|
|
Returns:
|
|
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
|
|
"""
|
|
global IMAGE_TOKEN
|
|
|
|
sft_format = "deepseek"
|
|
user_role_ind = 0
|
|
bot_role_ind = 1
|
|
|
|
# Initialize conversation
|
|
conversation = vl_chat_processor.new_chat_template()
|
|
|
|
if history:
|
|
conversation.messages = history
|
|
|
|
if images is not None and len(images) > 0:
|
|
|
|
num_image_tags = text.count(IMAGE_TOKEN)
|
|
num_images = len(images)
|
|
|
|
if num_images > num_image_tags:
|
|
pad_image_tags = num_images - num_image_tags
|
|
image_tokens = "\n".join([IMAGE_TOKEN] * pad_image_tags)
|
|
|
|
# append the <image> in a new line after the text prompt
|
|
text = image_tokens + "\n" + text
|
|
elif num_images < num_image_tags:
|
|
remove_image_tags = num_image_tags - num_images
|
|
text = text.replace(IMAGE_TOKEN, "", remove_image_tags)
|
|
|
|
# print(f"prompt = {text}, len(images) = {len(images)}")
|
|
text = (text, images)
|
|
|
|
conversation.append_message(conversation.roles[user_role_ind], text)
|
|
conversation.append_message(conversation.roles[bot_role_ind], "")
|
|
|
|
# Create a copy of the conversation to avoid history truncation in the UI
|
|
conversation_copy = conversation.copy()
|
|
logger.info("=" * 80)
|
|
logger.info(get_prompt(conversation))
|
|
|
|
rounds = len(conversation.messages) // 2
|
|
|
|
for _ in range(rounds):
|
|
current_prompt = get_prompt(conversation)
|
|
current_prompt = (
|
|
current_prompt.replace("</s>", "")
|
|
if sft_format == "deepseek"
|
|
else current_prompt
|
|
)
|
|
|
|
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
|
|
return conversation_copy
|
|
|
|
if len(conversation.messages) % 2 != 0:
|
|
gr.Error("The messages between user and assistant are not paired.")
|
|
return
|
|
|
|
try:
|
|
for _ in range(2): # pop out two messages in a row
|
|
conversation.messages.pop(0)
|
|
except IndexError:
|
|
gr.Error("Input text processing failed, unable to respond in this round.")
|
|
return None
|
|
|
|
gr.Error("Prompt could not be generated within max_length limit.")
|
|
return None
|
|
|
|
|
|
def to_gradio_chatbot(conv):
|
|
"""Convert the conversation to gradio chatbot format."""
|
|
ret = []
|
|
for i, (role, msg) in enumerate(conv.messages[conv.offset:]):
|
|
if i % 2 == 0:
|
|
if type(msg) is tuple:
|
|
msg, images = msg
|
|
|
|
if isinstance(images, list):
|
|
for j, image in enumerate(images):
|
|
if isinstance(image, str):
|
|
with open(image, "rb") as f:
|
|
data = f.read()
|
|
img_b64_str = base64.b64encode(data).decode()
|
|
image_str = (f'<img src="data:image/png;base64,{img_b64_str}" '
|
|
f'alt="user upload image" style="max-width: 300px; height: auto;" />')
|
|
else:
|
|
image_str = pil_to_base64(image, f"user upload image_{j}", max_size=800, min_size=400)
|
|
|
|
# replace the <image> tag in the message
|
|
msg = msg.replace(IMAGE_TOKEN, image_str, 1)
|
|
|
|
else:
|
|
pass
|
|
|
|
ret.append([msg, None])
|
|
else:
|
|
ret[-1][-1] = msg
|
|
return ret
|
|
|
|
|
|
def to_gradio_history(conv):
|
|
"""Convert the conversation to gradio history state."""
|
|
return conv.messages[conv.offset:]
|
|
|
|
|
|
def get_prompt(conv) -> str:
|
|
"""Get the prompt for generation."""
|
|
system_prompt = conv.system_template.format(system_message=conv.system_message)
|
|
if conv.sep_style == SeparatorStyle.DeepSeek:
|
|
seps = [conv.sep, conv.sep2]
|
|
if system_prompt == "" or system_prompt is None:
|
|
ret = ""
|
|
else:
|
|
ret = system_prompt + seps[0]
|
|
for i, (role, message) in enumerate(conv.messages):
|
|
if message:
|
|
if type(message) is tuple: # multimodal message
|
|
message, _ = message
|
|
ret += role + ": " + message + seps[i % 2]
|
|
else:
|
|
ret += role + ":"
|
|
return ret
|
|
else:
|
|
return conv.get_prompt()
|
|
|
|
|
|
def transfer_input(input_text, input_images):
|
|
print("transferring input text and input image")
|
|
|
|
return (
|
|
input_text,
|
|
input_images,
|
|
gr.update(value=""),
|
|
gr.update(value=None),
|
|
gr.Button(visible=True)
|
|
)
|
|
|
|
|
|
@wrap_gen_fn
|
|
def predict(
|
|
text,
|
|
images,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
repetition_penalty,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
model_select_dropdown,
|
|
):
|
|
"""
|
|
Function to predict the response based on the user's input and selected model.
|
|
|
|
Parameters:
|
|
user_text (str): The input text from the user.
|
|
user_image (str): The input image from the user.
|
|
chatbot (str): The chatbot's name.
|
|
history (str): The history of the chat.
|
|
top_p (float): The top-p parameter for the model.
|
|
temperature (float): The temperature parameter for the model.
|
|
max_length_tokens (int): The maximum length of tokens for the model.
|
|
max_context_length_tokens (int): The maximum length of context tokens for the model.
|
|
model_select_dropdown (str): The selected model from the dropdown.
|
|
|
|
Returns:
|
|
generator: A generator that yields the chatbot outputs, history, and status.
|
|
"""
|
|
print("running the prediction function")
|
|
try:
|
|
tokenizer, vl_gpt, vl_chat_processor = fetch_model(model_select_dropdown)
|
|
|
|
if text == "":
|
|
yield chatbot, history, "Empty context."
|
|
return
|
|
except KeyError:
|
|
yield [[text, "No Model Found"]], [], "No Model Found"
|
|
return
|
|
|
|
if images is None:
|
|
images = []
|
|
|
|
# load images
|
|
pil_images = []
|
|
for img_or_file in images:
|
|
try:
|
|
# load as pil image
|
|
if isinstance(images, Image.Image):
|
|
pil_images.append(img_or_file)
|
|
else:
|
|
image = Image.open(img_or_file.name).convert("RGB")
|
|
pil_images.append(image)
|
|
except Exception as e:
|
|
print(f"Error loading image: {e}")
|
|
|
|
conversation = generate_prompt_with_history(
|
|
text,
|
|
pil_images,
|
|
history,
|
|
vl_chat_processor,
|
|
tokenizer,
|
|
max_length=max_context_length_tokens,
|
|
)
|
|
all_conv, last_image = convert_conversation_to_prompts(conversation)
|
|
|
|
stop_words = conversation.stop_str
|
|
gradio_chatbot_output = to_gradio_chatbot(conversation)
|
|
|
|
full_response = ""
|
|
with torch.no_grad():
|
|
for x in deepseek_generate(
|
|
conversations=all_conv,
|
|
vl_gpt=vl_gpt,
|
|
vl_chat_processor=vl_chat_processor,
|
|
tokenizer=tokenizer,
|
|
stop_words=stop_words,
|
|
max_length=max_length_tokens,
|
|
temperature=temperature,
|
|
repetition_penalty=repetition_penalty,
|
|
top_p=top_p,
|
|
chunk_size=args.chunk_size
|
|
):
|
|
full_response += x
|
|
response = strip_stop_words(full_response, stop_words)
|
|
conversation.update_last_message(response)
|
|
gradio_chatbot_output[-1][1] = response
|
|
|
|
# sys.stdout.write(x)
|
|
# sys.stdout.flush()
|
|
|
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
|
|
|
if last_image is not None:
|
|
# TODO always render the last image's visual grounding image
|
|
vg_image = parse_ref_bbox(response, last_image)
|
|
if vg_image is not None:
|
|
vg_base64 = pil_to_base64(vg_image, f"vg", max_size=800, min_size=400)
|
|
gradio_chatbot_output[-1][1] += vg_base64
|
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."
|
|
|
|
print("flushed result to gradio")
|
|
torch.cuda.empty_cache()
|
|
|
|
if is_variable_assigned("x"):
|
|
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
|
|
print(
|
|
f"temperature: {temperature}, "
|
|
f"top_p: {top_p}, "
|
|
f"repetition_penalty: {repetition_penalty}, "
|
|
f"max_length_tokens: {max_length_tokens}"
|
|
)
|
|
|
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
|
|
|
|
|
|
# @wrap_gen_fn
|
|
def retry(
|
|
text,
|
|
images,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
repetition_penalty,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
model_select_dropdown,
|
|
):
|
|
if len(history) == 0:
|
|
yield (chatbot, history, "Empty context")
|
|
return
|
|
|
|
chatbot.pop()
|
|
history.pop()
|
|
text = history.pop()[-1]
|
|
if type(text) is tuple:
|
|
text, image = text
|
|
|
|
yield from predict(
|
|
text,
|
|
images,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
repetition_penalty,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
model_select_dropdown,
|
|
args.chunk_size
|
|
)
|
|
|
|
|
|
def preview_images(files):
|
|
if files is None:
|
|
return []
|
|
|
|
image_paths = []
|
|
for file in files:
|
|
# 使用 file.name 获取文件路径
|
|
# image = Image.open(file.name)
|
|
image_paths.append(file.name)
|
|
return image_paths # 返回所有图片路径,用于预览
|
|
|
|
|
|
def build_demo(args):
|
|
# fetch model
|
|
if not args.lazy_load:
|
|
fetch_model(args.model_name)
|
|
|
|
with open("deepseek_vl2/serve/assets/custom.css", "r", encoding="utf-8") as f:
|
|
customCSS = f.read()
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
history = gr.State([])
|
|
input_text = gr.State()
|
|
input_images = gr.State()
|
|
|
|
with gr.Row():
|
|
gr.HTML(title)
|
|
status_display = gr.Markdown("Success", elem_id="status_display")
|
|
gr.Markdown(description_top)
|
|
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=4):
|
|
with gr.Row():
|
|
chatbot = gr.Chatbot(
|
|
elem_id="deepseek_chatbot",
|
|
show_share_button=True,
|
|
bubble_full_width=False,
|
|
height=600,
|
|
)
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
text_box = gr.Textbox(
|
|
show_label=False, placeholder="Enter text", container=False
|
|
)
|
|
with gr.Column(
|
|
min_width=70,
|
|
):
|
|
submitBtn = gr.Button("Send")
|
|
with gr.Column(
|
|
min_width=70,
|
|
):
|
|
cancelBtn = gr.Button("Stop")
|
|
with gr.Row():
|
|
emptyBtn = gr.Button(
|
|
"🧹 New Conversation",
|
|
)
|
|
retryBtn = gr.Button("🔄 Regenerate")
|
|
delLastBtn = gr.Button("🗑️ Remove Last Turn")
|
|
|
|
with gr.Column():
|
|
upload_images = gr.Files(file_types=["image"], show_label=True)
|
|
gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
|
|
|
|
upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
|
|
|
|
with gr.Tab(label="Parameter Setting") as parameter_row:
|
|
top_p = gr.Slider(
|
|
minimum=-0,
|
|
maximum=1.0,
|
|
value=0.9,
|
|
step=0.05,
|
|
interactive=True,
|
|
label="Top-p",
|
|
)
|
|
temperature = gr.Slider(
|
|
minimum=0,
|
|
maximum=1.0,
|
|
value=0.1,
|
|
step=0.1,
|
|
interactive=True,
|
|
label="Temperature",
|
|
)
|
|
repetition_penalty = gr.Slider(
|
|
minimum=0.0,
|
|
maximum=2.0,
|
|
value=1.1,
|
|
step=0.1,
|
|
interactive=True,
|
|
label="Repetition penalty",
|
|
)
|
|
max_length_tokens = gr.Slider(
|
|
minimum=0,
|
|
maximum=4096,
|
|
value=2048,
|
|
step=8,
|
|
interactive=True,
|
|
label="Max Generation Tokens",
|
|
)
|
|
max_context_length_tokens = gr.Slider(
|
|
minimum=0,
|
|
maximum=8192,
|
|
value=4096,
|
|
step=128,
|
|
interactive=True,
|
|
label="Max History Tokens",
|
|
)
|
|
model_select_dropdown = gr.Dropdown(
|
|
label="Select Models",
|
|
choices=[args.model_name],
|
|
multiselect=False,
|
|
value=args.model_name,
|
|
interactive=True,
|
|
)
|
|
|
|
# show images, but not visible
|
|
show_images = gr.HTML(visible=False)
|
|
# show_images = gr.Image(type="pil", interactive=False, visible=False)
|
|
|
|
def format_examples(examples_list):
|
|
examples = []
|
|
for images, texts in examples_list:
|
|
examples.append([images, display_example(images), texts])
|
|
|
|
return examples
|
|
|
|
gr.Examples(
|
|
examples=format_examples(examples_list),
|
|
inputs=[upload_images, show_images, text_box],
|
|
)
|
|
|
|
gr.Markdown(description)
|
|
|
|
input_widgets = [
|
|
input_text,
|
|
input_images,
|
|
chatbot,
|
|
history,
|
|
top_p,
|
|
temperature,
|
|
repetition_penalty,
|
|
max_length_tokens,
|
|
max_context_length_tokens,
|
|
model_select_dropdown,
|
|
]
|
|
output_widgets = [chatbot, history, status_display]
|
|
|
|
transfer_input_args = dict(
|
|
fn=transfer_input,
|
|
inputs=[text_box, upload_images],
|
|
outputs=[input_text, input_images, text_box, upload_images, submitBtn],
|
|
show_progress=True,
|
|
)
|
|
|
|
predict_args = dict(
|
|
fn=predict,
|
|
inputs=input_widgets,
|
|
outputs=output_widgets,
|
|
show_progress=True,
|
|
)
|
|
|
|
retry_args = dict(
|
|
fn=retry,
|
|
inputs=input_widgets,
|
|
outputs=output_widgets,
|
|
show_progress=True,
|
|
)
|
|
|
|
reset_args = dict(
|
|
fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
|
|
)
|
|
|
|
predict_events = [
|
|
text_box.submit(**transfer_input_args).then(**predict_args),
|
|
submitBtn.click(**transfer_input_args).then(**predict_args),
|
|
]
|
|
|
|
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
|
|
emptyBtn.click(**reset_args)
|
|
retryBtn.click(**retry_args)
|
|
|
|
delLastBtn.click(
|
|
delete_last_conversation,
|
|
[chatbot, history],
|
|
output_widgets,
|
|
show_progress=True,
|
|
)
|
|
|
|
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
|
|
|
|
return demo
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--model_name", type=str, required=True, choices=MODELS, help="model name")
|
|
parser.add_argument("--local_path", type=str, default="", help="huggingface ckpt, optional")
|
|
parser.add_argument("--ip", type=str, default="0.0.0.0", help="ip address")
|
|
parser.add_argument("--port", type=int, default=37913, help="port number")
|
|
parser.add_argument("--root_path", type=str, default="", help="root path")
|
|
parser.add_argument("--lazy_load", action='store_true')
|
|
parser.add_argument("--chunk_size", type=int, default=-1,
|
|
help="chunk size for the model for prefiiling. "
|
|
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
|
|
"Otherwise, default value is -1, which means we do not use incremental_prefilling.")
|
|
args = parser.parse_args()
|
|
|
|
demo = build_demo(args)
|
|
demo.title = "DeepSeek-VL2 Chatbot"
|
|
|
|
reload_javascript()
|
|
demo.queue(concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS).launch(
|
|
# share=False,
|
|
share=True,
|
|
favicon_path="deepseek_vl2/serve/assets/favicon.ico",
|
|
inbrowser=False,
|
|
server_name=args.ip,
|
|
server_port=args.port,
|
|
root_path=args.root_path
|
|
)
|