# Copyright (c) 2023-2024 DeepSeek. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from argparse import ArgumentParser from typing import List, Dict import torch from transformers import AutoModelForCausalLM import PIL.Image from deepseek_vl2.models import DeepseekVLV2ForCausalLM, DeepseekVLV2Processor from deepseek_vl2.serve.app_modules.utils import parse_ref_bbox def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]: """ Args: conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is : [ { "role": "User", "content": "\nExtract all information from this image and convert them into markdown format.", "images": ["./examples/table_datasets.png"] }, {"role": "Assistant", "content": ""}, ] Returns: pil_images (List[PIL.Image.Image]): the list of PIL images. """ pil_images = [] for message in conversations: if "images" not in message: continue for image_path in message["images"]: pil_img = PIL.Image.open(image_path) pil_img = pil_img.convert("RGB") pil_images.append(pil_img) return pil_images def main(args): dtype = torch.bfloat16 # specify the path to the model model_path = args.model_path vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path) tokenizer = vl_chat_processor.tokenizer vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained( model_path, trust_remote_code=True, torch_dtype=dtype ) vl_gpt = vl_gpt.cuda().eval() # single image conversation example conversation = [ { "role": "<|User|>", "content": "\n<|ref|>The giraffe at the back.<|/ref|>.", "images": ["./images/visual_grounding.jpeg"], }, {"role": "<|Assistant|>", "content": ""}, ] # load images and prepare for inputs pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor.__call__( conversations=conversation, images=pil_images, force_batchify=True, system_prompt="" ).to(vl_gpt.device, dtype=dtype) with torch.no_grad(): # run image encoder to get the image embeddings inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) # run the model to get the response outputs = vl_gpt.generate( inputs_embeds=inputs_embeds, attention_mask=prepare_inputs.attention_mask, pad_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, do_sample=False, # repetition_penalty=1.1, # do_sample=True, # temperature=1.0, # top_p=0.9, # repetition_penalty=1.1, use_cache=True, ) answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=False) print(f"{prepare_inputs['sft_format'][0]}", answer) vg_image = parse_ref_bbox(answer, image=pil_images[0]) if vg_image is not None: vg_image.save("./vg.jpg", format="JPEG", quality=85) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--model_path", type=str, required=True, default="deepseek-ai/deepseek-vl2-27b-moe", help="model name or local path to the model") args = parser.parse_args() main(args)