DeepSeek-VL2/inference.py

191 lines
7.0 KiB
Python
Raw Permalink Normal View History

2024-12-13 12:38:59 +00:00
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from argparse import ArgumentParser
from typing import List, Dict
import torch
from transformers import AutoModelForCausalLM
import PIL.Image
2024-12-17 07:42:09 +00:00
from deepseek_vl2.models import DeepseekVLV2ForCausalLM, DeepseekVLV2Processor
from deepseek_vl2.serve.app_modules.utils import parse_ref_bbox
2024-12-13 12:38:59 +00:00
def load_pil_images(conversations: List[Dict[str, str]]) -> List[PIL.Image.Image]:
"""
Args:
conversations (List[Dict[str, str]]): the conversations with a list of messages. An example is :
[
{
"role": "User",
"content": "<image>\nExtract all information from this image and convert them into markdown format.",
"images": ["./examples/table_datasets.png"]
},
{"role": "Assistant", "content": ""},
]
Returns:
pil_images (List[PIL.Image.Image]): the list of PIL images.
"""
pil_images = []
for message in conversations:
if "images" not in message:
continue
for image_path in message["images"]:
pil_img = PIL.Image.open(image_path)
pil_img = pil_img.convert("RGB")
pil_images.append(pil_img)
return pil_images
def main(args):
dtype = torch.bfloat16
# specify the path to the model
model_path = args.model_path
vl_chat_processor: DeepseekVLV2Processor = DeepseekVLV2Processor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: DeepseekVLV2ForCausalLM = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype=dtype
)
vl_gpt = vl_gpt.cuda().eval()
# single image conversation example
conversation = [
{
"role": "<|User|>",
"content": "<image>\n<image>\n<|grounding|>In the first image, an object within the red rectangle is marked. Locate the object of the same category in the second image.",
"images": [
"images/incontext_visual_grounding_1.jpeg",
"images/icl_vg_2.jpeg"
],
2024-12-13 12:38:59 +00:00
},
{"role": "<|Assistant|>", "content": ""},
]
# conversation = [
# {
# "role": "<|User|>",
# "content": "<image>\n<|ref|>The giraffe at the back.<|/ref|>.",
# "images": ["./images/visual_grounding_1.jpeg"],
# },
# {"role": "<|Assistant|>", "content": ""},
# ]
2024-12-13 12:38:59 +00:00
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
print(f"len(pil_images) = {len(pil_images)}")
# input_ids = batched_input_ids,
# attention_mask = batched_attention_mask,
# labels = batched_labels,
# images_tiles = batched_images,
# images_seq_mask = batched_images_seq_mask,
# images_spatial_crop = batched_images_spatial_crop,
# sft_format = batched_sft_format,
# seq_lens = seq_lens
2024-12-13 12:38:59 +00:00
prepare_inputs = vl_chat_processor.__call__(
conversations=conversation,
images=pil_images,
force_batchify=True,
system_prompt=""
).to(vl_gpt.device, dtype=dtype)
# for key in prepare_inputs.keys():
# value = prepare_inputs[key]
# if isinstance(value, list):
# print(key, len(value), type(value))
# elif isinstance(value, torch.Tensor):
# print(key, value.shape, type(value))
2024-12-13 12:38:59 +00:00
with torch.no_grad():
2024-12-30 06:48:51 +00:00
if args.chunk_size == -1:
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
past_key_values = None
else:
2024-12-30 06:19:34 +00:00
# incremental_prefilling when using 40G GPU for vl2-small
inputs_embeds, past_key_values = vl_gpt.incremental_prefilling(
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
attention_mask=prepare_inputs.attention_mask,
chunk_size=args.chunk_size
)
2024-12-13 12:38:59 +00:00
# run the model to get the response
outputs = vl_gpt.generate(
# inputs_embeds=inputs_embeds[:, -1:],
# input_ids=prepare_inputs.input_ids[:, -1:],
2024-12-13 12:38:59 +00:00
inputs_embeds=inputs_embeds,
input_ids=prepare_inputs.input_ids,
images=prepare_inputs.images,
images_seq_mask=prepare_inputs.images_seq_mask,
images_spatial_crop=prepare_inputs.images_spatial_crop,
2024-12-13 12:38:59 +00:00
attention_mask=prepare_inputs.attention_mask,
past_key_values=past_key_values,
2024-12-13 12:38:59 +00:00
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
2024-12-13 12:38:59 +00:00
# do_sample=False,
2024-12-13 12:38:59 +00:00
# repetition_penalty=1.1,
do_sample=True,
temperature=0.4,
top_p=0.9,
repetition_penalty=1.1,
2024-12-13 12:38:59 +00:00
use_cache=True,
)
answer = tokenizer.decode(outputs[0][len(prepare_inputs.input_ids[0]):].cpu().tolist(), skip_special_tokens=False)
2024-12-13 12:38:59 +00:00
print(f"{prepare_inputs['sft_format'][0]}", answer)
vg_image = parse_ref_bbox(answer, image=pil_images[-1])
2024-12-13 12:38:59 +00:00
if vg_image is not None:
vg_image.save("./vg.jpg", format="JPEG", quality=85)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--model_path", type=str, required=True,
default="deepseek-ai/deepseek-vl2",
2024-12-13 12:38:59 +00:00
help="model name or local path to the model")
2024-12-30 06:19:34 +00:00
parser.add_argument("--chunk_size", type=int, default=-1,
help="chunk size for the model for prefiiling. "
"When using 40G gpu for vl2-small, set a chunk_size for incremental_prefilling."
"Otherwise, default value is -1, which means we do not use incremental_prefilling.")
2024-12-13 12:38:59 +00:00
args = parser.parse_args()
main(args)