mirror of
https://github.com/deepseek-ai/DeepSeek-VL
synced 2024-11-22 11:27:51 +00:00
594 lines
20 KiB
Python
594 lines
20 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import copy
|
|
from dataclasses import dataclass
|
|
from functools import partial
|
|
from typing import List, Optional, Tuple, Type, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class MLPBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
mlp_dim: int,
|
|
act: Type[nn.Module] = nn.GELU,
|
|
) -> None:
|
|
super().__init__()
|
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
|
self.act = act()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.lin2(self.act(self.lin1(x)))
|
|
|
|
|
|
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
|
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
|
class LayerNorm2d(nn.Module):
|
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(num_channels))
|
|
self.bias = nn.Parameter(torch.zeros(num_channels))
|
|
self.eps = eps
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
u = x.mean(1, keepdim=True)
|
|
s = (x - u).pow(2).mean(1, keepdim=True)
|
|
x = (x - u) / torch.sqrt(s + self.eps)
|
|
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
|
return x
|
|
|
|
|
|
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
|
class ImageEncoderViT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
img_size: int = 1024,
|
|
patch_size: int = 16,
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
depth: int = 12,
|
|
num_heads: int = 12,
|
|
mlp_ratio: float = 4.0,
|
|
out_chans: int = 256,
|
|
qkv_bias: bool = True,
|
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
act_layer: Type[nn.Module] = nn.GELU,
|
|
use_abs_pos: bool = True,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
window_size: int = 0,
|
|
global_attn_indexes: Tuple[int, ...] = (),
|
|
downsample_channels: Tuple[int, ...] = (512, 1024),
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
img_size (int): Input image size.
|
|
patch_size (int): Patch size.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): Patch embedding dimension.
|
|
depth (int): Depth of ViT.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_abs_pos (bool): If True, use absolute positional embeddings.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks.
|
|
global_attn_indexes (list): Indexes for blocks using global attention.
|
|
downsample_channels (list): Channels for downsampling layers.
|
|
"""
|
|
super().__init__()
|
|
self.img_size = img_size
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
kernel_size=(patch_size, patch_size),
|
|
stride=(patch_size, patch_size),
|
|
in_chans=in_chans,
|
|
embed_dim=embed_dim,
|
|
)
|
|
|
|
self.pos_embed: Optional[nn.Parameter] = None
|
|
if use_abs_pos:
|
|
# Initialize absolute positional embedding with pretrain image size.
|
|
self.pos_embed = nn.Parameter(
|
|
torch.zeros(
|
|
1, img_size // patch_size, img_size // patch_size, embed_dim
|
|
)
|
|
)
|
|
|
|
self.blocks = nn.ModuleList()
|
|
for i in range(depth):
|
|
block = Block(
|
|
dim=embed_dim,
|
|
num_heads=num_heads,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
norm_layer=norm_layer,
|
|
act_layer=act_layer,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
window_size=window_size if i not in global_attn_indexes else 0,
|
|
input_size=(img_size // patch_size, img_size // patch_size),
|
|
)
|
|
self.blocks.append(block)
|
|
|
|
self.neck = nn.Sequential(
|
|
nn.Conv2d(
|
|
embed_dim,
|
|
out_chans,
|
|
kernel_size=1,
|
|
bias=False,
|
|
),
|
|
LayerNorm2d(out_chans),
|
|
nn.Conv2d(
|
|
out_chans,
|
|
out_chans,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=False,
|
|
),
|
|
LayerNorm2d(out_chans),
|
|
)
|
|
|
|
in_channels = out_chans
|
|
downsamples = []
|
|
for i in range(len(downsample_channels)):
|
|
out_channels = downsample_channels[i]
|
|
downsamples.append(
|
|
nn.Conv2d(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
bias=False,
|
|
)
|
|
)
|
|
in_channels = out_channels
|
|
self.downsamples = nn.Sequential(*downsamples)
|
|
|
|
self.sam_hd = True
|
|
if self.sam_hd:
|
|
self.hd_alpha_downsamples = nn.Parameter(torch.zeros(1))
|
|
# self.neck_hd = nn.Linear(embed_dim, embed_dim)
|
|
self.neck_hd = copy.deepcopy(self.neck)
|
|
# self.downsamples_hd = copy.deepcopy(self.downsamples)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.patch_embed(x)
|
|
if self.pos_embed is not None:
|
|
x = x + self.pos_embed
|
|
|
|
global_features = []
|
|
for i, blk in enumerate(self.blocks):
|
|
x = blk(x)
|
|
if self.sam_hd and blk.window_size == 0:
|
|
global_features.append(x)
|
|
|
|
x = self.neck(x.permute(0, 3, 1, 2))
|
|
x_dtype = x.dtype
|
|
x = F.interpolate(
|
|
x.float(), size=(96, 96), mode="bilinear", align_corners=False
|
|
).to(x_dtype)
|
|
x = self.downsamples(x)
|
|
|
|
if self.sam_hd:
|
|
first_global_feature = self.neck_hd(global_features[0].permute(0, 3, 1, 2))
|
|
x_dtype = first_global_feature.dtype
|
|
first_global_feature = F.interpolate(
|
|
first_global_feature.float(),
|
|
size=(96, 96),
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
)
|
|
first_global_feature = self.downsamples(first_global_feature.to(x_dtype))
|
|
x = x + first_global_feature * self.hd_alpha_downsamples
|
|
|
|
return x
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
qkv_bias: bool = True,
|
|
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
|
act_layer: Type[nn.Module] = nn.GELU,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
window_size: int = 0,
|
|
input_size: Optional[Tuple[int, int]] = None,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads in each ViT block.
|
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
norm_layer (nn.Module): Normalization layer.
|
|
act_layer (nn.Module): Activation layer.
|
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
window_size (int): Window size for window attention blocks. If it equals 0, then
|
|
use global attention.
|
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
positional parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.norm1 = norm_layer(dim)
|
|
self.attn = Attention(
|
|
dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
use_rel_pos=use_rel_pos,
|
|
rel_pos_zero_init=rel_pos_zero_init,
|
|
input_size=input_size if window_size == 0 else (window_size, window_size),
|
|
)
|
|
|
|
self.norm2 = norm_layer(dim)
|
|
self.mlp = MLPBlock(
|
|
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer
|
|
)
|
|
|
|
self.window_size = window_size
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
shortcut = x
|
|
x = self.norm1(x)
|
|
# Window partition
|
|
if self.window_size > 0:
|
|
H, W = x.shape[1], x.shape[2]
|
|
x, pad_hw = window_partition(x, self.window_size)
|
|
|
|
x = self.attn(x)
|
|
# Reverse window partition
|
|
if self.window_size > 0:
|
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
|
|
|
x = shortcut + x
|
|
x = x + self.mlp(self.norm2(x))
|
|
|
|
return x
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Multi-head Attention block with relative position embeddings."""
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int = 8,
|
|
qkv_bias: bool = True,
|
|
use_rel_pos: bool = False,
|
|
rel_pos_zero_init: bool = True,
|
|
input_size: Optional[Tuple[int, int]] = None,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
dim (int): Number of input channels.
|
|
num_heads (int): Number of attention heads.
|
|
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
|
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative
|
|
positional parameter size.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
head_dim = dim // num_heads
|
|
self.scale = head_dim**-0.5
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
self.use_rel_pos = use_rel_pos
|
|
if self.use_rel_pos:
|
|
assert (
|
|
input_size is not None
|
|
), "Input size must be provided if using relative positional encoding."
|
|
# initialize relative positional embeddings
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
B, H, W, _ = x.shape
|
|
# qkv with shape (3, B, nHead, H * W, C)
|
|
qkv = (
|
|
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
)
|
|
# q, k, v with shape (B * nHead, H * W, C)
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
|
|
|
def do_attention(q, k, v):
|
|
attn = (q * self.scale) @ k.transpose(-2, -1)
|
|
if self.use_rel_pos:
|
|
attn = add_decomposed_rel_pos(
|
|
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)
|
|
)
|
|
|
|
attn = attn.softmax(dim=-1)
|
|
x = (
|
|
(attn @ v)
|
|
.view(B, self.num_heads, H, W, -1)
|
|
.permute(0, 2, 3, 1, 4)
|
|
.reshape(B, H, W, -1)
|
|
)
|
|
|
|
return x
|
|
|
|
# from haiscale.utils import on_demand_checkpoint
|
|
# x = on_demand_checkpoint(do_attention, q, k, v)
|
|
x = do_attention(q, k, v)
|
|
x = self.proj(x)
|
|
|
|
return x
|
|
|
|
|
|
def window_partition(
|
|
x: torch.Tensor, window_size: int
|
|
) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
|
"""
|
|
Partition into non-overlapping windows with padding if needed.
|
|
Args:
|
|
x (tensor): input tokens with [B, H, W, C].
|
|
window_size (int): window size.
|
|
|
|
Returns:
|
|
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
|
(Hp, Wp): padded height and width before partition
|
|
"""
|
|
B, H, W, C = x.shape
|
|
|
|
pad_h = (window_size - H % window_size) % window_size
|
|
pad_w = (window_size - W % window_size) % window_size
|
|
if pad_h > 0 or pad_w > 0:
|
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
|
Hp, Wp = H + pad_h, W + pad_w
|
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
|
windows = (
|
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
|
)
|
|
return windows, (Hp, Wp)
|
|
|
|
|
|
def window_unpartition(
|
|
windows: torch.Tensor,
|
|
window_size: int,
|
|
pad_hw: Tuple[int, int],
|
|
hw: Tuple[int, int],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Window unpartition into original sequences and removing padding.
|
|
Args:
|
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
|
window_size (int): window size.
|
|
pad_hw (Tuple): padded height and width (Hp, Wp).
|
|
hw (Tuple): original height and width (H, W) before padding.
|
|
|
|
Returns:
|
|
x: unpartitioned sequences with [B, H, W, C].
|
|
"""
|
|
Hp, Wp = pad_hw
|
|
H, W = hw
|
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
|
x = windows.view(
|
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
|
)
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
|
|
|
if Hp > H or Wp > W:
|
|
x = x[:, :H, :W, :].contiguous()
|
|
return x
|
|
|
|
|
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Get relative positional embeddings according to the relative positions of
|
|
query and key sizes.
|
|
Args:
|
|
q_size (int): size of query q.
|
|
k_size (int): size of key k.
|
|
rel_pos (Tensor): relative position embeddings (L, C).
|
|
|
|
Returns:
|
|
Extracted positional embeddings according to relative positions.
|
|
"""
|
|
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
|
# Interpolate rel pos if needed.
|
|
if rel_pos.shape[0] != max_rel_dist:
|
|
# Interpolate rel pos.
|
|
rel_pos_resized = F.interpolate(
|
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
|
size=max_rel_dist,
|
|
mode="linear",
|
|
)
|
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
|
else:
|
|
rel_pos_resized = rel_pos
|
|
|
|
# Scale the coords with short length if shapes for q and k are different.
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
|
|
|
return rel_pos_resized[relative_coords.long()]
|
|
|
|
|
|
def add_decomposed_rel_pos(
|
|
attn: torch.Tensor,
|
|
q: torch.Tensor,
|
|
rel_pos_h: torch.Tensor,
|
|
rel_pos_w: torch.Tensor,
|
|
q_size: Tuple[int, int],
|
|
k_size: Tuple[int, int],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
|
Args:
|
|
attn (Tensor): attention map.
|
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
|
|
|
Returns:
|
|
attn (Tensor): attention map with added relative positional embeddings.
|
|
"""
|
|
q_h, q_w = q_size
|
|
k_h, k_w = k_size
|
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
|
|
|
B, _, dim = q.shape
|
|
r_q = q.reshape(B, q_h, q_w, dim)
|
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
|
|
|
attn = (
|
|
attn.view(B, q_h, q_w, k_h, k_w)
|
|
+ rel_h[:, :, :, :, None]
|
|
+ rel_w[:, :, :, None, :]
|
|
).view(B, q_h * q_w, k_h * k_w)
|
|
|
|
return attn
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
"""
|
|
Image to Patch Embedding.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
kernel_size: Tuple[int, int] = (16, 16),
|
|
stride: Tuple[int, int] = (16, 16),
|
|
padding: Tuple[int, int] = (0, 0),
|
|
in_chans: int = 3,
|
|
embed_dim: int = 768,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
kernel_size (Tuple): kernel size of the projection layer.
|
|
stride (Tuple): stride of the projection layer.
|
|
padding (Tuple): padding size of the projection layer.
|
|
in_chans (int): Number of input image channels.
|
|
embed_dim (int): Patch embedding dimension.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.proj = nn.Conv2d(
|
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.proj(x)
|
|
# B C H W -> B H W C
|
|
x = x.permute(0, 2, 3, 1)
|
|
return x
|
|
|
|
|
|
@dataclass
|
|
class SAMViTCfg:
|
|
image_size: Union[Tuple[int, int], int] = 1024
|
|
width: int = 1024
|
|
layers: int = 23
|
|
heads: int = 16
|
|
patch_size: int = 16
|
|
window_size: int = 14
|
|
prompt_embed_dim: int = 256
|
|
global_attn_indexes: Union[List[int], Tuple[int]] = (5, 11, 17, 23)
|
|
downsample_channels: Union[List[int], Tuple[int]] = (512, 1024)
|
|
|
|
|
|
SAM_MODEL_CONFIG = {
|
|
"sam_vit_b": {
|
|
"width": 768,
|
|
"layers": 12,
|
|
"heads": 12,
|
|
"global_attn_indexes": [2, 5, 8, 11],
|
|
"downsample_channels": (),
|
|
},
|
|
"sam_b_downsample": {
|
|
"width": 768,
|
|
"layers": 12,
|
|
"heads": 12,
|
|
"global_attn_indexes": [2, 5, 8, 11],
|
|
"downsample_channels": (512, 1024),
|
|
},
|
|
"sam_vit_l": {
|
|
"width": 1024,
|
|
"layers": 24,
|
|
"heads": 16,
|
|
"global_attn_indexes": [5, 11, 17, 23],
|
|
"downsample_channels": (),
|
|
},
|
|
"sam_vit_h": {
|
|
"width": 1280,
|
|
"layers": 32,
|
|
"heads": 16,
|
|
"global_attn_indexes": [7, 15, 23, 31],
|
|
"downsample_channels": (),
|
|
},
|
|
}
|
|
|
|
|
|
def create_sam_vit(
|
|
model_name: str = "sam_b_downsample",
|
|
image_size: int = 1024,
|
|
ckpt_path: str = "",
|
|
**kwargs,
|
|
):
|
|
assert (
|
|
model_name in SAM_MODEL_CONFIG.keys()
|
|
), f"model name: {model_name} should be in {SAM_MODEL_CONFIG.keys()}"
|
|
|
|
sam_cfg = SAMViTCfg(**SAM_MODEL_CONFIG[model_name])
|
|
image_encoder = ImageEncoderViT(
|
|
depth=sam_cfg.layers,
|
|
embed_dim=sam_cfg.width,
|
|
img_size=image_size,
|
|
mlp_ratio=4,
|
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
|
num_heads=sam_cfg.heads,
|
|
patch_size=sam_cfg.patch_size,
|
|
qkv_bias=True,
|
|
use_rel_pos=True,
|
|
global_attn_indexes=sam_cfg.global_attn_indexes,
|
|
window_size=14,
|
|
out_chans=sam_cfg.prompt_embed_dim,
|
|
downsample_channels=sam_cfg.downsample_channels,
|
|
)
|
|
|
|
if ckpt_path:
|
|
state_dict = torch.load(ckpt_path)
|
|
image_encoder.load_state_dict(state_dict, strict=False)
|
|
print(f"SAM-ViT restores from {ckpt_path}")
|
|
|
|
return image_encoder
|
|
|
|
|
|
if __name__ == "__main__":
|
|
x = torch.zeros(2, 3, 1024, 1024).bfloat16()
|
|
# x.permute(0, 3, 1, 2)
|
|
net = create_sam_vit().bfloat16()
|
|
out = net(x)
|
|
print(x.shape, out.shape)
|