mirror of
https://github.com/deepseek-ai/DeepSeek-VL
synced 2024-11-22 03:17:39 +00:00
171 lines
5.6 KiB
Python
171 lines
5.6 KiB
Python
# Copyright (c) 2023-2024 DeepSeek.
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
# this software and associated documentation files (the "Software"), to deal in
|
|
# the Software without restriction, including without limitation the rights to
|
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
# subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
import torch
|
|
from attrdict import AttrDict
|
|
from einops import rearrange
|
|
from transformers import (
|
|
AutoConfig,
|
|
AutoModelForCausalLM,
|
|
LlamaConfig,
|
|
LlamaForCausalLM,
|
|
PreTrainedModel,
|
|
)
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
from deepseek_vl.models.clip_encoder import CLIPVisionTower, HybridVisionTower
|
|
from deepseek_vl.models.projector import MlpProjector
|
|
|
|
|
|
def model_name_to_cls(cls_name):
|
|
if "MlpProjector" in cls_name:
|
|
cls = MlpProjector
|
|
|
|
elif "CLIPVisionTower" in cls_name:
|
|
cls = CLIPVisionTower
|
|
|
|
elif "HybridVisionTower" in cls_name:
|
|
cls = HybridVisionTower
|
|
|
|
else:
|
|
raise ValueError(f"class_name {cls_name} is invalid.")
|
|
|
|
return cls
|
|
|
|
|
|
class VisionConfig(PretrainedConfig):
|
|
model_type = "vision"
|
|
cls: str = ""
|
|
params: AttrDict = {}
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.cls = kwargs.get("cls", "")
|
|
if not isinstance(self.cls, str):
|
|
self.cls = self.cls.__name__
|
|
|
|
self.params = AttrDict(kwargs.get("params", {}))
|
|
|
|
|
|
class AlignerConfig(PretrainedConfig):
|
|
model_type = "aligner"
|
|
cls: str = ""
|
|
params: AttrDict = {}
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
self.cls = kwargs.get("cls", "")
|
|
if not isinstance(self.cls, str):
|
|
self.cls = self.cls.__name__
|
|
|
|
self.params = AttrDict(kwargs.get("params", {}))
|
|
|
|
|
|
class MultiModalityConfig(PretrainedConfig):
|
|
model_type = "multi_modality"
|
|
vision_config: VisionConfig
|
|
aligner_config: AlignerConfig
|
|
language_config: LlamaConfig
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
vision_config = kwargs.get("vision_config", {})
|
|
self.vision_config = VisionConfig(**vision_config)
|
|
|
|
aligner_config = kwargs.get("aligner_config", {})
|
|
self.aligner_config = AlignerConfig(**aligner_config)
|
|
|
|
language_config = kwargs.get("language_config", {})
|
|
if isinstance(language_config, LlamaConfig):
|
|
self.language_config = language_config
|
|
else:
|
|
self.language_config = LlamaConfig(**language_config)
|
|
|
|
|
|
class MultiModalityPreTrainedModel(PreTrainedModel):
|
|
config_class = MultiModalityConfig
|
|
base_model_prefix = "multi_modality"
|
|
_no_split_modules = []
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
|
|
|
class MultiModalityCausalLM(MultiModalityPreTrainedModel):
|
|
def __init__(self, config: MultiModalityConfig):
|
|
super().__init__(config)
|
|
|
|
vision_config = config.vision_config
|
|
vision_cls = model_name_to_cls(vision_config.cls)
|
|
self.vision_model = vision_cls(**vision_config.params)
|
|
|
|
aligner_config = config.aligner_config
|
|
aligner_cls = model_name_to_cls(aligner_config.cls)
|
|
self.aligner = aligner_cls(aligner_config.params)
|
|
|
|
language_config = config.language_config
|
|
self.language_model = LlamaForCausalLM(language_config)
|
|
|
|
def prepare_inputs_embeds(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
pixel_values: torch.FloatTensor,
|
|
images_seq_mask: torch.LongTensor,
|
|
images_emb_mask: torch.LongTensor,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
|
|
Args:
|
|
input_ids (torch.LongTensor): [b, T]
|
|
pixel_values (torch.FloatTensor): [b, n_images, 3, h, w]
|
|
images_seq_mask (torch.BoolTensor): [b, T]
|
|
images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens]
|
|
|
|
assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask)
|
|
|
|
Returns:
|
|
input_embeds (torch.Tensor): [b, T, D]
|
|
"""
|
|
|
|
bs, n = pixel_values.shape[0:2]
|
|
images = rearrange(pixel_values, "b n c h w -> (b n) c h w")
|
|
# [b x n, T2, D]
|
|
images_embeds = self.aligner(self.vision_model(images))
|
|
|
|
# [b x n, T2, D] -> [b, n x T2, D]
|
|
images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n)
|
|
# [b, n, T2] -> [b, n x T2]
|
|
images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)")
|
|
|
|
# [b, T, D]
|
|
input_ids[input_ids < 0] = 0 # ignore the image embeddings
|
|
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
|
|
|
|
# replace with the image embeddings
|
|
inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask]
|
|
|
|
return inputs_embeds
|
|
|
|
|
|
AutoConfig.register("vision", VisionConfig)
|
|
AutoConfig.register("aligner", AlignerConfig)
|
|
AutoConfig.register("multi_modality", MultiModalityConfig)
|
|
AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM)
|