mirror of
https://github.com/deepseek-ai/DeepSeek-VL
synced 2024-11-29 15:39:31 +00:00
391 lines
13 KiB
Python
391 lines
13 KiB
Python
|
# Copyright (c) 2023-2024 DeepSeek.
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
|
# this software and associated documentation files (the "Software"), to deal in
|
||
|
# the Software without restriction, including without limitation the rights to
|
||
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
||
|
# subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Dict, List
|
||
|
|
||
|
import torch
|
||
|
from PIL.Image import Image
|
||
|
from transformers import LlamaTokenizerFast
|
||
|
from transformers.processing_utils import ProcessorMixin
|
||
|
|
||
|
from deepseek_vl.models.image_processing_vlm import VLMImageProcessor
|
||
|
from deepseek_vl.utils.conversation import get_conv_template
|
||
|
|
||
|
|
||
|
class DictOutput(object):
|
||
|
def keys(self):
|
||
|
return self.__dict__.keys()
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
return self.__dict__[item]
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
self.__dict__[key] = value
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class VLChatProcessorOutput(DictOutput):
|
||
|
sft_format: str
|
||
|
input_ids: torch.Tensor
|
||
|
pixel_values: torch.Tensor
|
||
|
num_image_tokens: torch.IntTensor
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.input_ids)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class BatchedVLChatProcessorOutput(DictOutput):
|
||
|
sft_format: List[str]
|
||
|
input_ids: torch.Tensor
|
||
|
pixel_values: torch.Tensor
|
||
|
attention_mask: torch.Tensor
|
||
|
images_seq_mask: torch.BoolTensor
|
||
|
images_emb_mask: torch.BoolTensor
|
||
|
|
||
|
def to(self, device, dtype=torch.bfloat16):
|
||
|
self.input_ids = self.input_ids.to(device)
|
||
|
self.attention_mask = self.attention_mask.to(device)
|
||
|
self.images_seq_mask = self.images_seq_mask.to(device)
|
||
|
self.images_emb_mask = self.images_emb_mask.to(device)
|
||
|
self.pixel_values = self.pixel_values.to(device=device, dtype=dtype)
|
||
|
return self
|
||
|
|
||
|
|
||
|
class VLChatProcessor(ProcessorMixin):
|
||
|
image_processor_class = "AutoImageProcessor"
|
||
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
|
||
|
|
||
|
attributes = ["image_processor", "tokenizer"]
|
||
|
|
||
|
system_prompt = (
|
||
|
"You are a helpful language and vision assistant. "
|
||
|
"You are able to understand the visual content that the user provides, "
|
||
|
"and assist the user with a variety of tasks using natural language."
|
||
|
)
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_processor: VLMImageProcessor,
|
||
|
tokenizer: LlamaTokenizerFast,
|
||
|
image_tag: str = "<image_placeholder>",
|
||
|
num_image_tokens: int = 576,
|
||
|
add_special_token: bool = False,
|
||
|
sft_format: str = "deepseek",
|
||
|
mask_prompt: bool = True,
|
||
|
ignore_id: int = -100,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.image_processor = image_processor
|
||
|
self.tokenizer = tokenizer
|
||
|
|
||
|
image_id = self.tokenizer.vocab.get(image_tag)
|
||
|
if image_id is None:
|
||
|
special_tokens = [image_tag]
|
||
|
special_tokens_dict = {"additional_special_tokens": special_tokens}
|
||
|
self.tokenizer.add_special_tokens(special_tokens_dict)
|
||
|
print(f"Add image tag = {image_tag} to the tokenizer")
|
||
|
|
||
|
self.image_tag = image_tag
|
||
|
self.num_image_tokens = num_image_tokens
|
||
|
self.add_special_token = add_special_token
|
||
|
self.sft_format = sft_format
|
||
|
self.mask_prompt = mask_prompt
|
||
|
self.ignore_id = ignore_id
|
||
|
|
||
|
super().__init__(
|
||
|
image_processor,
|
||
|
tokenizer,
|
||
|
image_tag,
|
||
|
num_image_tokens,
|
||
|
add_special_token,
|
||
|
sft_format,
|
||
|
mask_prompt,
|
||
|
ignore_id,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
def new_chat_template(self):
|
||
|
conv = get_conv_template(self.sft_format)
|
||
|
conv.set_system_message(self.system_prompt)
|
||
|
return conv
|
||
|
|
||
|
def apply_sft_template_for_multi_turn_prompts(
|
||
|
self,
|
||
|
conversations: List[Dict[str, str]],
|
||
|
sft_format: str = "deepseek",
|
||
|
system_prompt: str = "",
|
||
|
):
|
||
|
"""
|
||
|
Applies the SFT template to conversation.
|
||
|
|
||
|
An example of conversation:
|
||
|
conversation = [
|
||
|
{
|
||
|
"role": "User",
|
||
|
"content": "<image_placeholder> is Figure 1.\n<image_placeholder> is Figure 2.\nWhich image is brighter?",
|
||
|
"images": [
|
||
|
"./multi-images/attribute_comparison_1.png",
|
||
|
"./multi-images/attribute_comparison_2.png"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"role": "Assistant",
|
||
|
"content": ""
|
||
|
}
|
||
|
]
|
||
|
|
||
|
Args:
|
||
|
conversations (List[Dict]): A conversation with a List of Dict[str, str] text.
|
||
|
sft_format (str, optional): The format of the SFT template to use. Defaults to "deepseek".
|
||
|
system_prompt (str, optional): The system prompt to use in the SFT template. Defaults to "".
|
||
|
|
||
|
Returns:
|
||
|
sft_prompt (str): The formatted text.
|
||
|
"""
|
||
|
|
||
|
conv = get_conv_template(sft_format)
|
||
|
conv.set_system_message(system_prompt)
|
||
|
for message in conversations:
|
||
|
conv.append_message(message["role"], message["content"].strip())
|
||
|
sft_prompt = conv.get_prompt().strip()
|
||
|
|
||
|
return sft_prompt
|
||
|
|
||
|
@property
|
||
|
def image_token(self):
|
||
|
return self.image_tag
|
||
|
|
||
|
@property
|
||
|
def image_id(self):
|
||
|
image_id = self.tokenizer.vocab.get(self.image_tag)
|
||
|
return image_id
|
||
|
|
||
|
@property
|
||
|
def pad_id(self):
|
||
|
pad_id = self.tokenizer.pad_token_id
|
||
|
if pad_id is None:
|
||
|
pad_id = self.tokenizer.eos_token_id
|
||
|
|
||
|
return pad_id
|
||
|
|
||
|
def add_image_token(
|
||
|
self,
|
||
|
image_indices: List[int],
|
||
|
input_ids: torch.LongTensor,
|
||
|
):
|
||
|
"""
|
||
|
|
||
|
Args:
|
||
|
image_indices (List[int]): [index_0, index_1, ..., index_j]
|
||
|
input_ids (torch.LongTensor): [N]
|
||
|
|
||
|
Returns:
|
||
|
input_ids (torch.LongTensor): [N + image tokens]
|
||
|
num_image_tokens (torch.IntTensor): [n_images]
|
||
|
"""
|
||
|
|
||
|
input_slices = []
|
||
|
|
||
|
start = 0
|
||
|
for index in image_indices:
|
||
|
if self.add_special_token:
|
||
|
end = index + 1
|
||
|
else:
|
||
|
end = index
|
||
|
|
||
|
# original text tokens
|
||
|
input_slices.append(input_ids[start:end])
|
||
|
|
||
|
# add image tokens, and set the mask as False
|
||
|
input_slices.append(
|
||
|
self.image_id * torch.ones((self.num_image_tokens,), dtype=torch.long)
|
||
|
)
|
||
|
start = index + 1
|
||
|
|
||
|
# the left part
|
||
|
input_slices.append(input_ids[start:])
|
||
|
|
||
|
# concat all slices
|
||
|
input_ids = torch.cat(input_slices, dim=0)
|
||
|
num_image_tokens = torch.IntTensor([self.num_image_tokens] * len(image_indices))
|
||
|
|
||
|
return input_ids, num_image_tokens
|
||
|
|
||
|
def process_one(
|
||
|
self,
|
||
|
prompt: str = None,
|
||
|
conversations: List[Dict[str, str]] = None,
|
||
|
images: List[Image] = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
|
||
|
Args:
|
||
|
prompt (str): the formatted prompt;
|
||
|
conversations (List[Dict]): conversations with a list of messages;
|
||
|
images (List[ImageType]): the list of images;
|
||
|
**kwargs:
|
||
|
|
||
|
Returns:
|
||
|
outputs (BaseProcessorOutput): the output of the processor,
|
||
|
- input_ids (torch.LongTensor): [N + image tokens]
|
||
|
- target_ids (torch.LongTensor): [N + image tokens]
|
||
|
- images (torch.FloatTensor): [n_images, 3, H, W]
|
||
|
- image_id (int): the id of the image token
|
||
|
- num_image_tokens (List[int]): the number of image tokens
|
||
|
"""
|
||
|
|
||
|
assert (
|
||
|
prompt is None or conversations is None
|
||
|
), "prompt and conversations cannot be used at the same time."
|
||
|
|
||
|
if prompt is None:
|
||
|
# apply sft format
|
||
|
sft_format = self.apply_sft_template_for_multi_turn_prompts(
|
||
|
conversations=conversations,
|
||
|
sft_format=self.sft_format,
|
||
|
system_prompt=self.system_prompt,
|
||
|
)
|
||
|
else:
|
||
|
sft_format = prompt
|
||
|
|
||
|
# tokenize
|
||
|
input_ids = self.tokenizer.encode(sft_format)
|
||
|
input_ids = torch.LongTensor(input_ids)
|
||
|
|
||
|
# add image tokens to the input_ids
|
||
|
image_token_mask: torch.BoolTensor = input_ids == self.image_id
|
||
|
image_indices = image_token_mask.nonzero()
|
||
|
input_ids, num_image_tokens = self.add_image_token(
|
||
|
image_indices=image_indices,
|
||
|
input_ids=input_ids,
|
||
|
)
|
||
|
|
||
|
# load images
|
||
|
images_outputs = self.image_processor(images, return_tensors="pt")
|
||
|
|
||
|
prepare = VLChatProcessorOutput(
|
||
|
sft_format=sft_format,
|
||
|
input_ids=input_ids,
|
||
|
pixel_values=images_outputs.pixel_values,
|
||
|
num_image_tokens=num_image_tokens,
|
||
|
)
|
||
|
|
||
|
return prepare
|
||
|
|
||
|
def __call__(
|
||
|
self,
|
||
|
*,
|
||
|
prompt: str = None,
|
||
|
conversations: List[Dict[str, str]] = None,
|
||
|
images: List[Image] = None,
|
||
|
force_batchify: bool = True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
|
||
|
Args:
|
||
|
prompt (str): the formatted prompt;
|
||
|
conversations (List[Dict]): conversations with a list of messages;
|
||
|
images (List[ImageType]): the list of images;
|
||
|
force_batchify (bool): force batchify the inputs;
|
||
|
**kwargs:
|
||
|
|
||
|
Returns:
|
||
|
outputs (BaseProcessorOutput): the output of the processor,
|
||
|
- input_ids (torch.LongTensor): [N + image tokens]
|
||
|
- images (torch.FloatTensor): [n_images, 3, H, W]
|
||
|
- image_id (int): the id of the image token
|
||
|
- num_image_tokens (List[int]): the number of image tokens
|
||
|
"""
|
||
|
|
||
|
prepare = self.process_one(
|
||
|
prompt=prompt, conversations=conversations, images=images
|
||
|
)
|
||
|
|
||
|
if force_batchify:
|
||
|
prepare = self.batchify([prepare])
|
||
|
|
||
|
return prepare
|
||
|
|
||
|
def batchify(
|
||
|
self, prepare_list: List[VLChatProcessorOutput]
|
||
|
) -> BatchedVLChatProcessorOutput:
|
||
|
"""
|
||
|
Preprocesses the inputs for multimodal inference.
|
||
|
|
||
|
Args:
|
||
|
prepare_list (List[VLChatProcessorOutput]): A list of VLChatProcessorOutput.
|
||
|
|
||
|
Returns:
|
||
|
BatchedVLChatProcessorOutput: A dictionary of the inputs to use for multimodal inference.
|
||
|
"""
|
||
|
|
||
|
batch_size = len(prepare_list)
|
||
|
sft_format = []
|
||
|
n_images = []
|
||
|
seq_lens = []
|
||
|
for prepare in prepare_list:
|
||
|
n_images.append(len(prepare.num_image_tokens))
|
||
|
seq_lens.append(len(prepare))
|
||
|
|
||
|
input_token_max_len = max(seq_lens)
|
||
|
max_n_images = max(1, max(n_images))
|
||
|
|
||
|
batched_input_ids = torch.full(
|
||
|
(batch_size, input_token_max_len), self.pad_id
|
||
|
).long() # FIXME
|
||
|
batched_attention_mask = torch.zeros((batch_size, input_token_max_len)).long()
|
||
|
batched_pixel_values = torch.zeros(
|
||
|
(batch_size, max_n_images, *self.image_processor.default_shape)
|
||
|
).float()
|
||
|
batched_images_seq_mask = torch.zeros((batch_size, input_token_max_len)).bool()
|
||
|
batched_images_emb_mask = torch.zeros(
|
||
|
(batch_size, max_n_images, self.num_image_tokens)
|
||
|
).bool()
|
||
|
|
||
|
for i, prepare in enumerate(prepare_list):
|
||
|
input_ids = prepare.input_ids
|
||
|
seq_len = len(prepare)
|
||
|
n_image = len(prepare.num_image_tokens)
|
||
|
# left-padding
|
||
|
batched_attention_mask[i, -seq_len:] = 1
|
||
|
batched_input_ids[i, -seq_len:] = torch.LongTensor(input_ids)
|
||
|
batched_images_seq_mask[i, -seq_len:] = input_ids == self.image_id
|
||
|
|
||
|
if n_image > 0:
|
||
|
batched_pixel_values[i, :n_image] = prepare.pixel_values
|
||
|
for j, n_image_tokens in enumerate(prepare.num_image_tokens):
|
||
|
batched_images_emb_mask[i, j, :n_image_tokens] = True
|
||
|
|
||
|
sft_format.append(prepare.sft_format)
|
||
|
|
||
|
batched_prepares = BatchedVLChatProcessorOutput(
|
||
|
input_ids=batched_input_ids,
|
||
|
attention_mask=batched_attention_mask,
|
||
|
pixel_values=batched_pixel_values,
|
||
|
images_seq_mask=batched_images_seq_mask,
|
||
|
images_emb_mask=batched_images_emb_mask,
|
||
|
sft_format=sft_format,
|
||
|
)
|
||
|
|
||
|
return batched_prepares
|