mirror of
https://github.com/deepseek-ai/DeepSeek-VL
synced 2025-02-22 03:37:32 +00:00
83 lines
2.9 KiB
Python
83 lines
2.9 KiB
Python
|
# Prediction interface for Cog ⚙️
|
||
|
# https://github.com/replicate/cog/blob/main/docs/python.md
|
||
|
|
||
|
from cog import BasePredictor, Input, Path, ConcatenateIterator
|
||
|
import os
|
||
|
import torch
|
||
|
from threading import Thread
|
||
|
from deepseek_vl.utils.io import load_pil_images
|
||
|
from transformers import AutoModelForCausalLM, TextIteratorStreamer
|
||
|
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
|
||
|
|
||
|
# Enable faster download speed
|
||
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||
|
MODEL_NAME = "deepseek-ai/deepseek-vl-7b-base"
|
||
|
CACHE_DIR = "checkpoints"
|
||
|
|
||
|
|
||
|
class Predictor(BasePredictor):
|
||
|
def setup(self) -> None:
|
||
|
"""Load the model into memory to make running multiple predictions efficient"""
|
||
|
self.vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(
|
||
|
MODEL_NAME,
|
||
|
cache_dir=CACHE_DIR
|
||
|
)
|
||
|
self.tokenizer = self.vl_chat_processor.tokenizer
|
||
|
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
|
||
|
MODEL_NAME,
|
||
|
torch_dtype=torch.bfloat16,
|
||
|
cache_dir=CACHE_DIR
|
||
|
)
|
||
|
self.vl_gpt = vl_gpt.to('cuda')
|
||
|
|
||
|
@torch.inference_mode()
|
||
|
def predict(
|
||
|
self,
|
||
|
image: Path = Input(description="Input image"),
|
||
|
prompt: str = Input(description="Input prompt", default="Describe this image"),
|
||
|
max_new_tokens: int = Input(description="Maximum number of tokens to generate", default=512)
|
||
|
) -> ConcatenateIterator[str]:
|
||
|
"""Run a single prediction on the model"""
|
||
|
conversation = [
|
||
|
{
|
||
|
"role": "User",
|
||
|
"content": "<image_placeholder>"+prompt,
|
||
|
"images": [str(image)]
|
||
|
},
|
||
|
{
|
||
|
"role": "Assistant",
|
||
|
"content": ""
|
||
|
}
|
||
|
]
|
||
|
|
||
|
# load images and prepare for inputs
|
||
|
pil_images = load_pil_images(conversation)
|
||
|
prepare_inputs = self.vl_chat_processor(
|
||
|
conversations=conversation,
|
||
|
images=pil_images,
|
||
|
force_batchify=True
|
||
|
).to('cuda')
|
||
|
|
||
|
streamer = TextIteratorStreamer(
|
||
|
self.tokenizer, skip_prompt=True, skip_special_tokens=True
|
||
|
)
|
||
|
|
||
|
thread = Thread(
|
||
|
target=self.vl_gpt.language_model.generate,
|
||
|
kwargs={
|
||
|
"inputs_embeds": self.vl_gpt.prepare_inputs_embeds(**prepare_inputs),
|
||
|
"attention_mask": prepare_inputs.attention_mask,
|
||
|
"pad_token_id": self.tokenizer.eos_token_id,
|
||
|
"bos_token_id": self.tokenizer.bos_token_id,
|
||
|
"eos_token_id": self.tokenizer.eos_token_id,
|
||
|
"max_new_tokens": max_new_tokens,
|
||
|
"do_sample": False,
|
||
|
"use_cache": True,
|
||
|
"streamer": streamer,
|
||
|
},
|
||
|
)
|
||
|
thread.start()
|
||
|
for new_token in streamer:
|
||
|
yield new_token
|
||
|
thread.join()
|