mirror of
https://github.com/deepseek-ai/DeepSeek-V3
synced 2025-01-22 12:25:30 +00:00
138 lines
5.3 KiB
Python
138 lines
5.3 KiB
Python
import os
|
|
import json
|
|
from argparse import ArgumentParser
|
|
from typing import List
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from transformers import AutoTokenizer
|
|
from safetensors.torch import load_model
|
|
|
|
from model import Transformer, ModelArgs
|
|
|
|
|
|
def sample(logits, temperature: float = 1.0):
|
|
logits = logits / max(temperature, 1e-5)
|
|
probs = torch.softmax(logits, dim=-1)
|
|
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
|
|
|
|
|
|
@torch.inference_mode()
|
|
def generate(
|
|
model: Transformer,
|
|
prompt_tokens: List[List[int]],
|
|
max_new_tokens: int,
|
|
eos_id: int,
|
|
temperature: float = 1.0
|
|
) -> List[List[int]]:
|
|
prompt_lens = [len(t) for t in prompt_tokens]
|
|
assert max(prompt_lens) <= model.max_seq_len
|
|
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
|
|
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
|
|
for i, t in enumerate(prompt_tokens):
|
|
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
|
|
prev_pos = 0
|
|
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
|
|
prompt_mask = tokens != -1
|
|
for cur_pos in range(min(prompt_lens), total_len):
|
|
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
|
if temperature > 0:
|
|
next_token = sample(logits, temperature)
|
|
else:
|
|
next_token = logits.argmax(dim=-1)
|
|
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
|
tokens[:, cur_pos] = next_token
|
|
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
|
|
prev_pos = cur_pos
|
|
if finished.all():
|
|
break
|
|
completion_tokens = []
|
|
for i, toks in enumerate(tokens.tolist()):
|
|
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
|
|
if eos_id in toks:
|
|
toks = toks[:toks.index(eos_id)]
|
|
completion_tokens.append(toks)
|
|
return completion_tokens
|
|
|
|
|
|
def main(
|
|
ckpt_path: str,
|
|
config: str,
|
|
input_file: str = "",
|
|
interactive: bool = True,
|
|
max_new_tokens: int = 100,
|
|
temperature: float = 1.0,
|
|
) -> None:
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
rank = int(os.getenv("RANK", "0"))
|
|
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
|
if world_size > 1:
|
|
dist.init_process_group("nccl")
|
|
global print
|
|
if rank != 0:
|
|
print = lambda *_, **__: None
|
|
torch.cuda.set_device(local_rank)
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
torch.set_num_threads(8)
|
|
torch.manual_seed(965)
|
|
with open(config) as f:
|
|
args = ModelArgs(**json.load(f))
|
|
print(args)
|
|
with torch.device("cuda"):
|
|
model = Transformer(args)
|
|
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
|
|
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
|
|
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
|
|
|
|
if interactive:
|
|
messages = []
|
|
while True:
|
|
if world_size == 1:
|
|
prompt = input(">>> ")
|
|
elif rank == 0:
|
|
prompt = input(">>> ")
|
|
objects = [prompt]
|
|
dist.broadcast_object_list(objects, 0)
|
|
else:
|
|
objects = [None]
|
|
dist.broadcast_object_list(objects, 0)
|
|
prompt = objects[0]
|
|
if prompt == "/exit":
|
|
break
|
|
elif prompt == "/clear":
|
|
messages.clear()
|
|
continue
|
|
messages.append({"role": "user", "content": prompt})
|
|
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
|
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
|
|
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
|
|
print(completion)
|
|
messages.append({"role": "assistant", "content": completion})
|
|
else:
|
|
with open(input_file) as f:
|
|
prompts = [line.strip() for line in f.readlines()]
|
|
assert len(prompts) <= args.max_batch_size
|
|
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
|
|
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
|
|
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
|
|
for prompt, completion in zip(prompts, completions):
|
|
print("Prompt:", prompt)
|
|
print("Completion:", completion)
|
|
print()
|
|
|
|
if world_size > 1:
|
|
dist.destroy_process_group()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--ckpt-path", type=str, required=True)
|
|
parser.add_argument("--config", type=str, required=True)
|
|
parser.add_argument("--input-file", type=str, default="")
|
|
parser.add_argument("--interactive", action="store_true")
|
|
parser.add_argument("--max-new-tokens", type=int, default=200)
|
|
parser.add_argument("--temperature", type=float, default=0.2)
|
|
args = parser.parse_args()
|
|
assert args.input_file or args.interactive
|
|
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
|