mirror of
https://github.com/deepseek-ai/DeepSeek-V3
synced 2025-01-22 12:25:30 +00:00
805 lines
32 KiB
Python
805 lines
32 KiB
Python
import math
|
|
from dataclasses import dataclass
|
|
from typing import Tuple, Optional, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import torch.distributed as dist
|
|
|
|
from kernel import act_quant, weight_dequant, fp8_gemm
|
|
|
|
|
|
world_size = 1
|
|
rank = 0
|
|
block_size = 128
|
|
gemm_impl: Literal["bf16", "fp8"] = "bf16"
|
|
attn_impl: Literal["naive", "absorb"] = "absorb"
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
"""
|
|
Data class for defining model arguments and hyperparameters.
|
|
|
|
Attributes:
|
|
max_batch_size (int): Maximum batch size.
|
|
max_seq_len (int): Maximum sequence length.
|
|
dtype (Literal["bf16", "fp8"]): Data type for computations.
|
|
vocab_size (int): Vocabulary size.
|
|
dim (int): Model dimension.
|
|
inter_dim (int): Intermediate dimension for MLP layers.
|
|
moe_inter_dim (int): Intermediate dimension for MoE layers.
|
|
n_layers (int): Number of transformer layers.
|
|
n_dense_layers (int): Number of dense layers in the model.
|
|
n_heads (int): Number of attention heads.
|
|
n_routed_experts (int): Number of routed experts for MoE layers.
|
|
n_shared_experts (int): Number of shared experts for MoE layers.
|
|
n_activated_experts (int): Number of activated experts in MoE layers.
|
|
n_expert_groups (int): Number of expert groups.
|
|
n_limited_groups (int): Number of limited groups for MoE routing.
|
|
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
|
|
route_scale (float): Scaling factor for routing scores.
|
|
q_lora_rank (int): LoRA rank for query projections.
|
|
kv_lora_rank (int): LoRA rank for key-value projections.
|
|
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
|
|
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
|
|
v_head_dim (int): Dimension for value projections.
|
|
original_seq_len (int): Original sequence length.
|
|
rope_theta (float): Base for rotary positional encoding.
|
|
rope_factor (float): Scaling factor for extended sequence lengths.
|
|
beta_fast (int): Fast beta correction factor.
|
|
beta_slow (int): Slow beta correction factor.
|
|
mscale (float): Scaling factor for extended attention.
|
|
"""
|
|
max_batch_size: int = 8
|
|
max_seq_len: int = 4096 * 4
|
|
dtype: Literal["bf16", "fp8"] = "bf16"
|
|
vocab_size: int = 102400
|
|
dim: int = 2048
|
|
inter_dim: int = 10944
|
|
moe_inter_dim: int = 1408
|
|
n_layers: int = 27
|
|
n_dense_layers: int = 1
|
|
n_heads: int = 16
|
|
# moe
|
|
n_routed_experts: int = 64
|
|
n_shared_experts: int = 2
|
|
n_activated_experts: int = 6
|
|
n_expert_groups: int = 1
|
|
n_limited_groups: int = 1
|
|
score_func: Literal["softmax", "sigmoid"] = "softmax"
|
|
route_scale: float = 1.
|
|
# mla
|
|
q_lora_rank: int = 0
|
|
kv_lora_rank: int = 512
|
|
qk_nope_head_dim: int = 128
|
|
qk_rope_head_dim: int = 64
|
|
v_head_dim: int = 128
|
|
# yarn
|
|
original_seq_len: int = 4096
|
|
rope_theta: float = 10000.0
|
|
rope_factor: float = 40
|
|
beta_fast: int = 32
|
|
beta_slow: int = 1
|
|
mscale: float = 1.
|
|
|
|
|
|
class ParallelEmbedding(nn.Module):
|
|
"""
|
|
Embedding layer with parallelism support across distributed processes.
|
|
|
|
Args:
|
|
vocab_size (int): Vocabulary size.
|
|
dim (int): Embedding dimension.
|
|
"""
|
|
def __init__(self, vocab_size: int, dim: int):
|
|
super().__init__()
|
|
self.vocab_size = vocab_size
|
|
self.dim = dim
|
|
assert vocab_size % world_size == 0
|
|
self.part_vocab_size = (vocab_size // world_size)
|
|
self.vocab_start_idx = rank * self.part_vocab_size
|
|
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
|
|
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for parallel embedding layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor containing token indices.
|
|
|
|
Returns:
|
|
torch.Tensor: Embedded representations.
|
|
|
|
Raises:
|
|
ValueError: If `world_size` is not defined.
|
|
"""
|
|
if world_size > 1:
|
|
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
|
|
x = x - self.vocab_start_idx
|
|
x[mask] = 0
|
|
y = F.embedding(x, self.weight)
|
|
if world_size > 1:
|
|
y[mask] = 0
|
|
dist.all_reduce(y)
|
|
return y
|
|
|
|
|
|
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
"""
|
|
Applies a linear transformation to the incoming data: y = xA^T + b.
|
|
This function supports specialized implementations based on quantization
|
|
and tensor formats.
|
|
|
|
Args:
|
|
x (torch.Tensor): The input tensor.
|
|
weight (torch.Tensor): The weight tensor. It may be quantized and
|
|
requires dequantization for certain cases.
|
|
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
|
|
|
|
Returns:
|
|
torch.Tensor: The result of the linear transformation, which may involve
|
|
quantization-aware computations depending on the input parameters.
|
|
|
|
Notes:
|
|
- If `weight` is quantized (e.g., `element_size() > 1`), a dequantized version
|
|
is used for computation.
|
|
- If `gemm_impl == "bf16"`, dequantization and a `bf16` GEMM operation are applied.
|
|
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
|
|
"""
|
|
if weight.element_size() > 1:
|
|
return F.linear(x, weight, bias)
|
|
elif gemm_impl == "bf16":
|
|
weight = weight_dequant(weight, weight.scale)
|
|
return F.linear(x, weight, bias)
|
|
else:
|
|
x, scale = act_quant(x, block_size)
|
|
y = fp8_gemm(x, scale, weight, weight.scale)
|
|
if bias is not None:
|
|
y += bias
|
|
return y
|
|
|
|
|
|
class Linear(nn.Module):
|
|
"""
|
|
Custom linear layer with support for quantized weights and optional bias.
|
|
|
|
Args:
|
|
in_features (int): Number of input features.
|
|
out_features (int): Number of output features.
|
|
bias (bool): Whether to include a bias term. Defaults to False.
|
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
|
"""
|
|
dtype = torch.bfloat16
|
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
|
|
if self.weight.element_size() == 1:
|
|
scale_out_features = (out_features + block_size - 1) // block_size
|
|
scale_in_features = (in_features + block_size - 1) // block_size
|
|
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
|
|
else:
|
|
self.register_parameter("scale", None)
|
|
if bias:
|
|
self.bias = nn.Parameter(torch.empty(self.part_out_features))
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the custom linear layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Transformed tensor after linear computation.
|
|
"""
|
|
return linear(x, self.weight, self.bias)
|
|
|
|
|
|
class ColumnParallelLinear(Linear):
|
|
"""
|
|
Linear layer with column parallelism, splitting output features across distributed processes.
|
|
|
|
Args:
|
|
in_features (int): Number of input features.
|
|
out_features (int): Total number of output features.
|
|
bias (bool): Whether to include a bias term. Defaults to False.
|
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
|
"""
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
|
assert out_features % world_size == 0
|
|
self.part_out_features = out_features // world_size
|
|
super().__init__(in_features, self.part_out_features, bias, dtype)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for column parallel linear layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Transformed tensor with column-parallel computation.
|
|
"""
|
|
y = linear(x, self.weight, self.bias)
|
|
return y
|
|
|
|
|
|
class RowParallelLinear(Linear):
|
|
"""
|
|
Linear layer with row parallelism, splitting input features across distributed processes.
|
|
|
|
Args:
|
|
in_features (int): Total number of input features.
|
|
out_features (int): Number of output features.
|
|
bias (bool): Whether to include a bias term. Defaults to False.
|
|
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
|
|
"""
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
|
|
assert in_features % world_size == 0
|
|
self.part_in_features = in_features // world_size
|
|
super().__init__(self.part_in_features, out_features, bias, dtype)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for row parallel linear layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Transformed tensor with row-parallel computation.
|
|
"""
|
|
y = linear(x, self.weight)
|
|
if world_size > 1:
|
|
dist.all_reduce(y)
|
|
if self.bias is not None:
|
|
y += self.bias
|
|
return y
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
"""
|
|
Root Mean Square Layer Normalization (RMSNorm).
|
|
|
|
Args:
|
|
dim (int): Dimension of the input tensor.
|
|
eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
|
|
"""
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
"""
|
|
Forward pass for RMSNorm.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Normalized tensor with the same shape as input.
|
|
"""
|
|
return F.rms_norm(x, (self.dim,), self.weight, self.eps)
|
|
|
|
|
|
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
|
|
"""
|
|
Precomputes frequency-based complex exponential values for rotary positional embeddings.
|
|
|
|
Args:
|
|
args (ModelArgs): Model arguments containing positional embedding parameters.
|
|
|
|
Returns:
|
|
torch.Tensor: Precomputed complex exponential values for positional embeddings.
|
|
"""
|
|
dim = args.qk_rope_head_dim
|
|
seqlen = args.max_seq_len
|
|
beta_fast = args.beta_fast
|
|
beta_slow = args.beta_slow
|
|
base = args.rope_theta
|
|
factor = args.rope_factor
|
|
|
|
def find_correction_dim(num_rotations, dim, base, max_seq_len):
|
|
"""
|
|
Computes the correction dimension for a given number of rotations in the rotary positional embedding.
|
|
|
|
Args:
|
|
num_rotations (float): Number of rotations to compute the correction for.
|
|
dim (int): Dimensionality of the embedding space.
|
|
base (float): Base value for the exponential computation.
|
|
max_seq_len (int): Maximum sequence length.
|
|
|
|
Returns:
|
|
float: The correction dimension based on the input parameters.
|
|
"""
|
|
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
|
|
|
|
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
|
|
"""
|
|
Computes the range of correction dimensions for rotary positional embeddings.
|
|
|
|
Args:
|
|
low_rot (float): Lower bound for the number of rotations.
|
|
high_rot (float): Upper bound for the number of rotations.
|
|
dim (int): Dimensionality of the embedding space.
|
|
base (float): Base value for the exponential computation.
|
|
max_seq_len (int): Maximum sequence length.
|
|
|
|
Returns:
|
|
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
|
|
"""
|
|
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
|
|
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
|
|
return max(low, 0), min(high, dim-1)
|
|
|
|
def linear_ramp_factor(min, max, dim):
|
|
"""
|
|
Computes a linear ramp function used to smooth values between a minimum and maximum range.
|
|
|
|
Args:
|
|
min (float): Minimum value for the ramp function.
|
|
max (float): Maximum value for the ramp function.
|
|
dim (int): Dimensionality of the ramp tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
|
|
clamped to the range [0, 1].
|
|
"""
|
|
if min == max:
|
|
max += 0.001
|
|
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
|
ramp_func = torch.clamp(linear_func, 0, 1)
|
|
return ramp_func
|
|
|
|
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
|
if seqlen > args.original_seq_len:
|
|
low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
|
|
smooth = 1 - linear_ramp_factor(low, high, dim // 2)
|
|
freqs = freqs / factor * (1 - smooth) + freqs * smooth
|
|
|
|
t = torch.arange(seqlen)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
return freqs_cis
|
|
|
|
|
|
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Applies rotary positional embeddings to the input tensor.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor with positional embeddings to be applied.
|
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
|
|
|
|
Returns:
|
|
torch.Tensor: Tensor with rotary embeddings applied.
|
|
"""
|
|
dtype = x.dtype
|
|
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
|
|
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
|
|
y = torch.view_as_real(x * freqs_cis).flatten(3)
|
|
return y.to(dtype)
|
|
|
|
|
|
class MLA(nn.Module):
|
|
"""
|
|
Multi-Headed Attention Layer (MLA).
|
|
|
|
Attributes:
|
|
dim (int): Dimensionality of the input features.
|
|
n_heads (int): Number of attention heads.
|
|
n_local_heads (int): Number of local attention heads for distributed systems.
|
|
q_lora_rank (int): Rank for low-rank query projection.
|
|
kv_lora_rank (int): Rank for low-rank key/value projection.
|
|
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
|
|
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
|
|
qk_head_dim (int): Total dimensionality of query/key projections.
|
|
v_head_dim (int): Dimensionality of value projections.
|
|
softmax_scale (float): Scaling factor for softmax in attention computation.
|
|
"""
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.dim = args.dim
|
|
self.n_heads = args.n_heads
|
|
self.n_local_heads = args.n_heads // world_size
|
|
self.q_lora_rank = args.q_lora_rank
|
|
self.kv_lora_rank = args.kv_lora_rank
|
|
self.qk_nope_head_dim = args.qk_nope_head_dim
|
|
self.qk_rope_head_dim = args.qk_rope_head_dim
|
|
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
|
|
self.v_head_dim = args.v_head_dim
|
|
|
|
if self.q_lora_rank == 0:
|
|
self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
|
|
else:
|
|
self.wq_a = Linear(self.dim, self.q_lora_rank)
|
|
self.q_norm = RMSNorm(self.q_lora_rank)
|
|
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
|
|
self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
|
|
self.kv_norm = RMSNorm(self.kv_lora_rank)
|
|
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
|
|
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
|
|
self.softmax_scale = self.qk_head_dim ** -0.5
|
|
if args.max_seq_len > args.original_seq_len:
|
|
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
|
|
self.softmax_scale = self.softmax_scale * mscale * mscale
|
|
|
|
if attn_impl == "naive":
|
|
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False)
|
|
self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False)
|
|
else:
|
|
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
|
|
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
|
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
|
|
"""
|
|
Forward pass for the Multi-Headed Attention Layer (MLA).
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
|
|
start_pos (int): Starting position in the sequence for caching.
|
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
|
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor with the same shape as the input.
|
|
"""
|
|
bsz, seqlen, _ = x.size()
|
|
end_pos = start_pos + seqlen
|
|
if self.q_lora_rank == 0:
|
|
q = self.wq(x)
|
|
else:
|
|
q = self.wq_b(self.q_norm(self.wq_a(x)))
|
|
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
|
|
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
|
q_pe = apply_rotary_emb(q_pe, freqs_cis)
|
|
kv = self.wkv_a(x)
|
|
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
|
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
|
|
if attn_impl == "naive":
|
|
q = torch.cat([q_nope, q_pe], dim=-1)
|
|
kv = self.wkv_b(self.kv_norm(kv))
|
|
kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
|
|
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
|
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
|
|
self.k_cache[:bsz, start_pos:end_pos] = k
|
|
self.v_cache[:bsz, start_pos:end_pos] = v
|
|
scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale
|
|
else:
|
|
wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size)
|
|
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
|
|
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
|
|
self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv)
|
|
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
|
|
scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
|
|
torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale
|
|
if mask is not None:
|
|
scores += mask.unsqueeze(1)
|
|
scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
|
|
if attn_impl == "naive":
|
|
x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos])
|
|
else:
|
|
x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
|
|
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
|
|
x = self.wo(x.flatten(2))
|
|
return x
|
|
|
|
|
|
class MLP(nn.Module):
|
|
"""
|
|
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
|
|
|
|
Attributes:
|
|
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
|
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
|
w3 (nn.Module): Additional linear layer for feature transformation.
|
|
"""
|
|
def __init__(self, dim: int, inter_dim: int):
|
|
"""
|
|
Initializes the MLP layer.
|
|
|
|
Args:
|
|
dim (int): Input and output dimensionality.
|
|
inter_dim (int): Hidden layer dimensionality.
|
|
"""
|
|
super().__init__()
|
|
self.w1 = ColumnParallelLinear(dim, inter_dim)
|
|
self.w2 = RowParallelLinear(inter_dim, dim)
|
|
self.w3 = ColumnParallelLinear(dim, inter_dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the MLP layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after MLP computation.
|
|
"""
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class Gate(nn.Module):
|
|
"""
|
|
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
|
|
|
|
Attributes:
|
|
dim (int): Dimensionality of input features.
|
|
topk (int): Number of top experts activated for each input.
|
|
n_groups (int): Number of groups for routing.
|
|
topk_groups (int): Number of groups to route inputs to.
|
|
score_func (str): Scoring function ('softmax' or 'sigmoid').
|
|
route_scale (float): Scaling factor for routing weights.
|
|
weight (torch.nn.Parameter): Learnable weights for the gate.
|
|
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
|
|
"""
|
|
def __init__(self, args: ModelArgs):
|
|
"""
|
|
Initializes the Gate module.
|
|
|
|
Args:
|
|
args (ModelArgs): Model arguments containing gating parameters.
|
|
"""
|
|
super().__init__()
|
|
self.dim = args.dim
|
|
self.topk = args.n_activated_experts
|
|
self.n_groups = args.n_expert_groups
|
|
self.topk_groups = args.n_limited_groups
|
|
self.score_func = args.score_func
|
|
self.route_scale = args.route_scale
|
|
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
|
|
self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None
|
|
|
|
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Forward pass for the gating mechanism.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
|
|
"""
|
|
scores = linear(x, self.weight)
|
|
if self.score_func == "softmax":
|
|
scores = scores.softmax(dim=-1, dtype=torch.float32)
|
|
else:
|
|
scores = scores.sigmoid()
|
|
original_scores = scores
|
|
if self.bias is not None:
|
|
scores = scores + self.bias
|
|
if self.n_groups > 1:
|
|
scores = scores.view(x.size(0), self.n_groups, -1)
|
|
if self.bias is None:
|
|
group_scores = scores.amax(dim=-1)
|
|
else:
|
|
group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
|
|
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
|
|
mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, True)
|
|
scores = (scores * mask.unsqueeze(-1)).flatten(1)
|
|
indices = torch.topk(scores, self.topk, dim=-1)[1]
|
|
weights = original_scores.gather(1, indices)
|
|
if self.score_func == "sigmoid":
|
|
weights /= weights.sum(dim=-1, keepdim=True)
|
|
weights *= self.route_scale
|
|
return weights.type_as(x), indices
|
|
|
|
|
|
class Expert(nn.Module):
|
|
"""
|
|
Expert layer for Mixture-of-Experts (MoE) models.
|
|
|
|
Attributes:
|
|
w1 (nn.Module): Linear layer for input-to-hidden transformation.
|
|
w2 (nn.Module): Linear layer for hidden-to-output transformation.
|
|
w3 (nn.Module): Additional linear layer for feature transformation.
|
|
"""
|
|
def __init__(self, dim: int, inter_dim: int):
|
|
"""
|
|
Initializes the Expert layer.
|
|
|
|
Args:
|
|
dim (int): Input and output dimensionality.
|
|
inter_dim (int): Hidden layer dimensionality.
|
|
"""
|
|
super().__init__()
|
|
self.w1 = Linear(dim, inter_dim)
|
|
self.w2 = Linear(inter_dim, dim)
|
|
self.w3 = Linear(dim, inter_dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the Expert layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after expert computation.
|
|
"""
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class MoE(nn.Module):
|
|
"""
|
|
Mixture-of-Experts (MoE) module.
|
|
|
|
Attributes:
|
|
dim (int): Dimensionality of input features.
|
|
n_routed_experts (int): Total number of experts in the model.
|
|
n_local_experts (int): Number of experts handled locally in distributed systems.
|
|
n_activated_experts (int): Number of experts activated for each input.
|
|
gate (nn.Module): Gating mechanism to route inputs to experts.
|
|
experts (nn.ModuleList): List of expert modules.
|
|
shared_experts (nn.Module): Shared experts applied to all inputs.
|
|
"""
|
|
def __init__(self, args: ModelArgs):
|
|
"""
|
|
Initializes the MoE module.
|
|
|
|
Args:
|
|
args (ModelArgs): Model arguments containing MoE parameters.
|
|
"""
|
|
super().__init__()
|
|
self.dim = args.dim
|
|
assert args.n_routed_experts % world_size == 0
|
|
self.n_routed_experts = args.n_routed_experts
|
|
self.n_local_experts = args.n_routed_experts // world_size
|
|
self.n_activated_experts = args.n_activated_experts
|
|
self.experts_start_idx = rank * self.n_local_experts
|
|
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
|
|
self.gate = Gate(args)
|
|
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
|
|
for i in range(self.n_routed_experts)])
|
|
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the MoE module.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after expert routing and computation.
|
|
"""
|
|
shape = x.size()
|
|
x = x.view(-1, self.dim)
|
|
weights, indices = self.gate(x)
|
|
y = torch.zeros_like(x)
|
|
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
|
|
for i in range(self.experts_start_idx, self.experts_end_idx):
|
|
if counts[i] == 0:
|
|
continue
|
|
expert = self.experts[i]
|
|
idx, top = torch.where(indices == i)
|
|
y[idx] += expert(x[idx]) * weights[idx, top, None]
|
|
z = self.shared_experts(x)
|
|
if world_size > 1:
|
|
dist.all_reduce(y)
|
|
return (y + z).view(shape)
|
|
|
|
|
|
class Block(nn.Module):
|
|
"""
|
|
Transformer block combining attention and feed-forward layers.
|
|
|
|
Attributes:
|
|
attn (nn.Module): Attention layer (MLA).
|
|
ffn (nn.Module): Feed-forward network (MLP or MoE).
|
|
attn_norm (nn.Module): Layer normalization for attention.
|
|
ffn_norm (nn.Module): Layer normalization for feed-forward network.
|
|
"""
|
|
def __init__(self, layer_id: int, args: ModelArgs):
|
|
"""
|
|
Initializes the Transformer block.
|
|
|
|
Args:
|
|
layer_id (int): Layer index in the transformer.
|
|
args (ModelArgs): Model arguments containing block parameters.
|
|
"""
|
|
super().__init__()
|
|
self.attn = MLA(args)
|
|
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
|
|
self.attn_norm = RMSNorm(args.dim)
|
|
self.ffn_norm = RMSNorm(args.dim)
|
|
|
|
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
|
|
"""
|
|
Forward pass for the Transformer block.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor.
|
|
start_pos (int): Starting position in the sequence.
|
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
|
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after block computation.
|
|
"""
|
|
x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
|
|
x = x + self.ffn(self.ffn_norm(x))
|
|
return x
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
"""
|
|
Transformer model with positional embeddings, multiple layers, and output projection.
|
|
|
|
Attributes:
|
|
max_seq_len (int): Maximum sequence length for the transformer.
|
|
embed (nn.Module): Embedding layer for input tokens.
|
|
layers (torch.nn.ModuleList): List of transformer blocks.
|
|
norm (nn.Module): Layer normalization applied after all blocks.
|
|
head (nn.Module): Output projection layer mapping to vocabulary size.
|
|
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
|
|
"""
|
|
def __init__(self, args: ModelArgs):
|
|
"""
|
|
Initializes the Transformer model.
|
|
|
|
Args:
|
|
args (ModelArgs): Model arguments containing transformer parameters.
|
|
"""
|
|
global world_size, rank
|
|
world_size = dist.get_world_size() if dist.is_initialized() else 1
|
|
rank = dist.get_rank() if dist.is_initialized() else 0
|
|
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
|
|
super().__init__()
|
|
self.max_seq_len = args.max_seq_len
|
|
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
|
|
self.layers = torch.nn.ModuleList()
|
|
for layer_id in range(args.n_layers):
|
|
self.layers.append(Block(layer_id, args))
|
|
self.norm = RMSNorm(args.dim)
|
|
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
|
|
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
|
|
|
|
@torch.inference_mode()
|
|
def forward(self, tokens: torch.Tensor, start_pos: int = 0):
|
|
"""
|
|
Forward pass for the Transformer model.
|
|
|
|
Args:
|
|
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
|
|
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
|
|
|
|
Returns:
|
|
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
|
|
"""
|
|
seqlen = tokens.size(1)
|
|
h = self.embed(tokens)
|
|
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
|
|
mask = None
|
|
if seqlen > 1:
|
|
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1)
|
|
for layer in self.layers:
|
|
h = layer(h, start_pos, freqs_cis, mask)
|
|
h = self.norm(h)[:, -1]
|
|
logits = self.head(h)
|
|
if world_size > 1:
|
|
all_logits = [torch.empty_like(logits) for _ in range(world_size)]
|
|
dist.all_gather(all_logits, logits)
|
|
logits = torch.cat(all_logits, dim=-1)
|
|
return logits
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
torch.set_default_device("cuda")
|
|
torch.manual_seed(0)
|
|
args = ModelArgs()
|
|
x = torch.randint(0, args.vocab_size, (2, 128))
|
|
model = Transformer(args)
|
|
print(model(x).size())
|