import os import shutil from argparse import ArgumentParser from glob import glob from tqdm import tqdm, trange import torch from safetensors.torch import safe_open, save_file mapping = { "embed_tokens": ("embed", 0), "input_layernorm": ("attn_norm", None), "post_attention_layernorm": ("ffn_norm", None), "q_proj": ("wq", 0), "q_a_proj": ("wq_a", None), "q_a_layernorm": ("q_norm", None), "q_b_proj": ("wq_b", 0), "kv_a_proj_with_mqa": ("wkv_a", None), "kv_a_layernorm": ("kv_norm", None), "kv_b_proj": ("wkv_b", 0), "o_proj": ("wo", 1), "gate": ("gate", None), "gate_proj": ("w1", 0), "down_proj": ("w2", 1), "up_proj": ("w3", 0), "norm": ("norm", None), "lm_head": ("head", 0), "scale": ("scale", None), } def main(hf_ckpt_path, save_path, n_experts, mp): """ Converts and saves model checkpoint files into a specified format. Args: hf_ckpt_path (str): Path to the directory containing the input checkpoint files. save_path (str): Path to the directory where the converted checkpoint files will be saved. n_experts (int): Total number of experts in the model. mp (int): Model parallelism factor. Returns: None """ torch.set_num_threads(8) n_local_experts = n_experts // mp state_dicts = [{} for _ in range(mp)] for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))): with safe_open(file_path, framework="pt", device="cpu") as f: for name in f.keys(): if "model.layers.61" in name: continue param: torch.Tensor = f.get_tensor(name) if name.startswith("model."): name = name[len("model."):] name = name.replace("self_attn", "attn") name = name.replace("mlp", "ffn") name = name.replace("weight_scale_inv", "scale") name = name.replace("e_score_correction_bias", "bias") key = name.split(".")[-2] assert key in mapping new_key, dim = mapping[key] name = name.replace(key, new_key) for i in range(mp): new_param = param if "experts" in name and "shared_experts" not in name: idx = int(name.split(".")[-3]) if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts: continue elif dim is not None: assert param.size(dim) % mp == 0 shard_size = param.size(dim) // mp new_param = param.narrow(dim, i * shard_size, shard_size).contiguous() state_dicts[i][name] = new_param os.makedirs(save_path, exist_ok=True) for i in trange(mp): save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors")) for file_path in glob(os.path.join(hf_ckpt_path, "*token*")): new_file_path = os.path.join(save_path, os.path.basename(file_path)) shutil.copyfile(file_path, new_file_path) if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--hf-ckpt-path", type=str, required=True) parser.add_argument("--save-path", type=str, required=True) parser.add_argument("--n-experts", type=int, required=True) parser.add_argument("--model-parallel", type=int, required=True) args = parser.parse_args() assert args.n_experts % args.model_parallel == 0 main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)